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Dependency Injection enables loose coupling and
loose coupling makes code more maintainable

Mark Seemann



We’re actually talking about loose coupling today



Coupling



Benefits of loose coupling
• Maintainability - Classes are more clearly defined
• Extensibility - easy to recompose application
• Testability - isolate what you’re testing



A worked example
Class A needs class B in order to work.

class Letter

{

    protected $paper;

    public function __construct()

    {

        $this->paper = new WritingPaper();

    }

}

// usage:

$letter = new Letter();

$letter->write("Dear John, ...");



Pros and cons:
Pros:

• Very simple to use

Cons:

• Tight coupling

• Cannot test Letter in isolation
• Cannot change $paper



The problem with coupling
• How do we change the the paper size?
• How do we change the type of paper?



Method parameters?
class Letter

{

    protected $paper;

    public function __construct($size)

    {

        $this->paper = new WritingPaper($size);

    }

}

// usage:

$letter = new Letter('A4');

$letter->write("Dear John, ...");



Use a Registry?
class Letter

{

    protected $paper;

    public function write($text)

    {

        $paper = Zend_Registry::get('paper');

        return $paper->placeWords($text);

    }

}

// usage:

Zend_Registry::set('paper', new AirmailPaper('A4'));

$letter = new Letter();

$letter->write("Dear John, ...");



Inject the dependency!



Injection
class Letter

{

    protected $paper;

    public function __construct($paper)

    {

        $this->paper = $paper;

    }

}

// usage:

$letter = new Letter(new WritingPaper('A4'));

$letter->write("Dear John, ...");



This is also known as

Inverson of Control



Pros and cons:
Pros:

• Decoupled $paper from Letter:

• Can change the type of paper
• Natural configuration of the Paper object

• Can test Letter independently

Cons:

• Burden on construction of $paper is on the user



Dependency Injection

That’s it; we’re done!



Types of injection
Constructor injection:

$letter = new Letter($paper);

Property injection:

$letter = new Letter();

$letter->paper = $paper;

Setter injection:

$letter = new Letter();

$letter->setPaper($paper);



Note
Too many constructor parameters is a code smell

Two-phase construction is Bad(TM)



Rule of thumb
• Constructor injection for required dependencies
• Setter injection for optional dependencies



How about usage?
$paper = new AirmailPaper('A4');

$envelope = new Envelope('DL');

$letter = new Letter($paper, $envelope);

$letter->write("Dear John, ...");

Setup of dependencies gets tedious quickly



Dependency Injection Container

A DIC is an object that handles the creation of objects
and their dependencies for you

Dependency resolution can be automatic or configured

DICs are optional



Write a simple container
class LetterContainer

{

    public function getLetter()

    {

        $paper = new AirmailPaper('A4');

        $envelope = new Envelope('DL');

        $letter = new Letter($paper, $envelope);

        return $letter;

    }

}



Usage
$container = new LetterContainer()

$letter = $container->getLetter();



Handle configuration
class LetterContainer

{

    protected $params;

    public function __construct(array $params)

    {

        $this->params = $params;

    }



cont…
    public function getLetter()

    {

        $paper = new AirmailPaper(

            $this->params['paper.size']);

        $envelope = new Envelope(

            $this->params['envelope.size']);

        $letter = new Letter($paper, $envelope);

        return $letter;

    }

}



Usage
// usage:

$container = new LetterContainer(array(

    'paper.size' => 'A4',

    'envelope.size' => 'DL',

    ))

$letter = $container->getLetter();

Now, it’s easy to change parameters of the dependent
objects



Shared objects
class LetterContainer

{

    protected $shared;

    // ...

    public function getLetter()

    {

        if (!isset(self::$shared['letter'])) {

            // ... create $letter as before ...

            self::$shared['letter'] = $letter;

        }

        return self::$shared['letter'];

    }

}



Dependency Injection Container

• Creates objects on demand
• Manages construction of an object’s dependencies
• Separates of configuration from construction
• Can allow for shared objects

However:

Writing and maintaining a container class by hand is
tedious!



Available DICs
Don’t reinvent the wheel

• Pimple by Fabien Potencier
• Dice by Tom Butler
• SymfonyContainer - part of Symfony2
• ZendDi & ZendServiceManager - part of ZF 2



Pimple
• Easy to use
• Small: only 70 lines of PHP
• Configured manually



Pimple
$container = new Pimple();

$container['letter'] = function ($c) {

    $paper = new AirmailPaper('A4');

    $envelope = new Envelope('DL');

    $letter = new Letter($paper, $envelope);

    return $letter;

};



Pimple usage
$container = new Pimple();

$letter = $container['letter'];



More typically
$container = new Pimple();

$container['paper.size'] = 'DL';

$container['envelope.size'] = 'DL';

$container['paper'] = function ($c) {

    $size = $c['paper.size'];

    return new AirmailPaper($size);

};

$container['envelope'] = function ($c) {

    $size = $c['envelope.size'];

    return new Envelope($size);

};



cont…
$container['letter'] = function ($c) {

    $paper = $c['paper'];

    $envelope = $c['envelope'];

    return new Letter($paper, $envelope);

};

Usage is identical:

$container = new Pimple();

$letter = $container['letter'];



Recommendation
• Hold configuration separately
• Create each each object separately



Automatic resolution
class Letter

{

    protected $paper;

    public function __construct(AirmailPaper $paper)

    {

        $this->paper = $paper;

    }

}

Usage:

$di = new Zend\Di\Di();

$letter = $di->get('Letter');



ZendDi configuration
beforehand:

$di->instanceManager()->setParameters('AirmailPaper',

    array(

        'size' => 'A4',

    )

);

when retrieving:

$letter = $di->get('Letter', array('size' => 'A4'));



Recap
Dependency injection promotes:

• loose coupling
• easier testing
• separation of configuration from usage



“Dependency Injection” is a 25-dollar term for a
5-cent concept.

James Shore



Thank you!

Rob Allen - http://akrabat.com - @akrabat
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