
Introducing
Dependency Injection

Rob Allen
November 2013

I make websites
19ft.com

Dependency Injection enables loose coupling and
loose coupling makes code more maintainable

Mark Seemann

We’re actually talking about loose coupling today

Coupling

Benefits of loose coupling
• Maintainability - Classes are more clearly defined
• Extensibility - easy to recompose application
• Testability - isolate what you’re testing

A worked example
Class A needs class B in order to work.

class Letter

{

 protected $paper;

 public function __construct()

 {

 $this->paper = new WritingPaper();

 }

}

// usage:

$letter = new Letter();

$letter->write("Dear John, ...");

Pros and cons:
Pros:

• Very simple to use

Cons:

• Tight coupling

• Cannot test Letter in isolation
• Cannot change $paper

The problem with coupling
• How do we change the paper size?
• How do we change the type of paper?

Method parameters?
class Letter

{

 protected $paper;

 public function __construct($size)

 {

 $this->paper = new WritingPaper($size);

 }

}

// usage:

$letter = new Letter('A4');

$letter->write("Dear John, ...");

Use a Registry?
class Letter

{

 protected $paper;

 public function write($text)

 {

 $paper = Zend_Registry::get('paper');

 return $paper->placeWords($text);

 }

}

// usage:

Zend_Registry::set('paper', new AirmailPaper('A4'));

$letter = new Letter();

$letter->write("Dear John, ...");

Inject the dependency!

Injection
class Letter

{

 protected $paper;

 public function __construct($paper)

 {

 $this->paper = $paper;

 }

}

// usage:

$letter = new Letter(new WritingPaper('A4'));

$letter->write("Dear John, ...");

This is also known as

Inversion of Control

Pros and cons:
Pros:

• Decoupled $paper from Letter:

• Can change the type of paper
• Natural configuration of the Paper object

• Can test Letter independently

Cons:

• Burden of construction of $paper is on the user

Dependency Injection

That’s it; we’re done!

Types of injection
Constructor injection:

$letter = new Letter($paper);

Property injection:

$letter = new Letter();

$letter->paper = $paper;

Setter injection:

$letter = new Letter();

$letter->setPaper($paper);

Note
Too many constructor parameters is a code smell

Two-phase construction is Bad(TM)

Rule of thumb
• Constructor injection for required dependencies
• Setter injection for optional dependencies

How about usage?
$paper = new AirmailPaper('A4');

$envelope = new Envelope('DL');

$letter = new Letter($paper, $envelope);

$letter->write("Dear John, ...");

Setup of dependencies gets tedious quickly

Dependency Injection Container

A DIC is an object that handles the creation of objects
and their dependencies for you

Dependency resolution can be automatic or configured

DICs are optional

Write a simple container
class LetterContainer

{

 public function getLetter()

 {

 $paper = new AirmailPaper('A4');

 $envelope = new Envelope('DL');

 $letter = new Letter($paper, $envelope);

 return $letter;

 }

}

Usage
$container = new LetterContainer()

$letter = $container->getLetter();

Handle configuration
class LetterContainer

{

 protected $params;

 public function __construct(array $params)

 {

 $this->params = $params;

 }

cont…
 public function getLetter()

 {

 $paper = new AirmailPaper(

 $this->params['paper.size']);

 $envelope = new Envelope(

 $this->params['envelope.size']);

 $letter = new Letter($paper, $envelope);

 return $letter;

 }

}

Usage
// usage:

$container = new LetterContainer(array(

 'paper.size' => 'A4',

 'envelope.size' => 'DL',

))

$letter = $container->getLetter();

Now, it’s easy to change parameters of the dependent
objects

Shared objects
class LetterContainer

{

 protected $shared;

 // ...

 public function getLetter()

 {

 if (!isset(self::$shared['letter'])) {

 // ... create $letter as before ...

 self::$shared['letter'] = $letter;

 }

 return self::$shared['letter'];

 }

}

Dependency Injection Container

• Creates objects on demand
• Manages construction of an object’s dependencies
• Separates of configuration from construction
• Can allow for shared objects

However:

Writing and maintaining a container class by hand is
tedious!

Available DICs
Don’t reinvent the wheel

• Pimple by Fabien Potencier
• Dice by Tom Butler
• SymfonyContainer - part of Symfony2
• ZendDi & ZendServiceManager - part of ZF 2

Pimple
• Easy to use
• Small: only 70 lines of PHP
• Configured manually

Pimple
$container = new Pimple();

$container['letter'] = function ($c) {

 $paper = new AirmailPaper('A4');

 $envelope = new Envelope('DL');

 $letter = new Letter($paper, $envelope);

 return $letter;

};

Pimple usage
$container = new Pimple();

$letter = $container['letter'];

More typically
$container = new Pimple();

$container['paper.size'] = 'DL';

$container['envelope.size'] = 'DL';

$container['paper'] = function ($c) {

 $size = $c['paper.size'];

 return new AirmailPaper($size);

};

$container['envelope'] = function ($c) {

 $size = $c['envelope.size'];

 return new Envelope($size);

};

cont…
$container['letter'] = function ($c) {

 $paper = $c['paper'];

 $envelope = $c['envelope'];

 return new Letter($paper, $envelope);

};

Usage is identical:

$container = new Pimple();

$letter = $container['letter'];

Recommendation
• Hold configuration separately
• Create each each object separately

Automatic resolution
class Letter

{

 protected $paper;

 public function __construct(AirmailPaper $paper)

 {

 $this->paper = $paper;

 }

}

Usage:

$di = new Zend\Di\Di();

$letter = $di->get('Letter');

ZendDi configuration
beforehand:

$di->instanceManager()->setParameters('AirmailPaper',

 array(

 'size' => 'A4',

)

);

when retrieving:

$letter = $di->get('Letter', array('size' => 'A4'));

Service Location
class Letter

{

 protected $paper;

 public function __construct($locator)

 {

 $this->paper = $locator->get('paper');

 }

}

Service Location
• Application pulls its dependencies in when it needs

them
• Still decouples concrete implementation of Paper

from Letter

Recap
Dependency injection promotes:

• loose coupling
• easier testing
• separation of configuration from usage

“Dependency Injection” is a 25-dollar term for a
5-cent concept.

James Shore

Thank you!
https://joind.in/9263

Rob Allen - http://akrabat.com - @akrabat

https://joind.in/9263
http://akrabat.com

	Coupling
	Benefits of loose coupling
	A worked example
	Pros and cons:
	The problem with coupling

	Method parameters?
	Use a Registry?
	Inject the dependency!
	Injection
	Pros and cons:
	Types of injection
	Note
	Rule of thumb
	How about usage?
	Dependency Injection Container

	Write a simple container
	Usage
	Handle configuration
	cont…
	Usage
	Shared objects
	Dependency Injection Container

	Available DICs
	Pimple
	Pimple
	Pimple usage
	More typically
	cont…
	Recommendation
	Automatic resolution
	ZendDi configuration
	Service Location
	Service Location
	Recap

