
 Page 1 of 7

Getting Started with Zend_Auth
By Rob Allen, www.akrabat.com

Document Revision 1.0.8
Copyright © 2007

This tutorial is intended to give a very basic introduction to using the Zend_Auth component
with the Zend Framework. It builds on the previous tutorial “Getting Started with the Zend
Tutorial” which is available at http://akrabat.com/zend-framework-tutorial.

NOTE: This tutorial has been tested on versions 1.0.0 and 1.0.1 of the Zend Framework. It
stands a very good chance of working with later versions.

Before We Get Started
The implementation of authentication that we are going to use in this tutorial uses PHP’s
sessions. Make sure that the directory set in your php.ini file’s session.save_path is writable
by the web server otherwise you will get a very odd exception thrown!

Authentication
For the purposes of this tutorial, authentication is the process of logging someone into a web
application. We are going to modify the CD listing application created in “Getting Started with
the Zend Framework” to require log in before accessing any part of the application.

Loosely, the things we need to do are:

• Create a database table for users (and populate it with a user!).

• Create a login form.

• Create a controller containing actions for logging in and logging out.

• Alter the footer to allow for log out

• Ensure that the user is logged in before allowing access to the application.

The users Table
The first thing we need is a users table. It doesn’t need to be complicated, so the schema
looks like this:

Fieldname Type Null? Notes

id Integer No Primary key, Autoincrement

username Varchar(50) No Unique key

password Varchar(50) No

real_name Varchar(100) No

When using MySQL, the SQL statement to create the table is:

CREATE TABLE users (

 id int(11) NOT NULL auto_increment,

 username varchar(50) NOT NULL,

 password varchar(50) NOT NULL,

 real_name varchar(100) NOT NULL,

 PRIMARY KEY (id),

 UNIQUE KEY username (username)

);

We also need a user that can log in:
INSERT INTO users (id, username, password, real_name)

VALUES (1, 'rob', 'rob', 'Rob Allen');

 Page 2 of 7

Run these statements in a MySQL client such as phpMyAdmin or the standard MySQL
command-line client. (Obviously, you should pick a better username and password!)

Bootstrap Changes
In order to keep track of the fact that the user is logged in, we are going to use the session.
The Zend Framework provides Zend_Session_Namespace which provides a nice object
oriented interface to the session.

The changes to index.php are:

zf-tutorial/index.php:

...

Zend_Loader::loadClass('Zend_Db_Table');

Zend_Loader::loadClass('Zend_Debug');

Zend_Loader::loadClass('Zend_Auth');

// load configuration

...

and
..

// setup database

$db = Zend_Db::factory($config->db->adapter,

 $config->db->config->toArray());

Zend_Db_Table::setDefaultAdapter($db);

Zend_Registry::set('db', $db);

// setup controller

$frontController = Zend_Controller_Front::getInstance();

...

All we actually have to do here is ensure we have loaded the Zend_Auth class and registered
the database adapter with the registry. We store it to the registry as we need it when we do
the authentication later.

The Auth Controller
We need a controller to hold the login and logout actions. It makes sense to call it
AuthController.

We’ll start it with the basics from the IndexController:

zf-tutorial/application/controllers/AuthController.php:

<?php

class AuthController extends Zend_Controller_Action

{

 function init()

 {

 $this->initView();

 $this->view->baseUrl = $this->_request->getBaseUrl();

 }

 function indexAction()

 {

 $this->_redirect('/');

 }

}

We set up init() so that the view is initialised and that baseUrl is assigned to it. We also create
an indexAction() function as required by Zend_Controller_Action. We don’t need indexAction()
though as we are going to use loginAction() and logoutAction(), so we just redirect back to the
default if someone does navigate to auth/index.

 Page 3 of 7

Logging In
To log into the application we need a form, so the login action is going to work in a manner
very similar to the other forms in IndexController. The form template will live in
views/scripts/auth/login.phtml and the code will be in AuthController::loginAction(). The form is
very simple, requiring just two fields: username and password:

zf-tutorial/application/views/scripts/auth/login.phtml:

<?php echo $this->render('header.phtml'); ?>

<h1><?php echo $this->escape($this->title); ?></h1>

<?php if(!empty($this->message)) :?>

<div id="message">

<?php echo $this->escape($this->message);?>

</div>

<?php endif; ?>

<form action="<?php echo $this->baseUrl ?>/auth/login" method="post">

<div>

 <label for="username">Username</label>

 <input type="text" name="username" value=""/>

</div>

<div>

 <label for="password">Password</label>

 <input type="password" name="password" value=""/>

</div>

<div id="formbutton">

<input type="submit" name="login" value="Login" />

</div>

</form>

<?php echo $this->render('footer.phtml'); ?>

The template renders the header.phtml and footer.phtml at the top and bottom as usual. Note
that we display a message only if $this->message is not empty. This is used to tell the user

that they failed to log in. The rest of the template is the log in form itself.

Now that we have a form, we need to create the controller action that will run it. This is added
to AuthController.php:

zf-tutorial/application/controllers/AuthController.php:

class AuthController extends Zend_Controller_Action

{

...

 function loginAction()

 {

 $this->view->message = '';

 $this->view->title = "Log in";

 }

}

Initially, all we need to do is set the title and message and then render the form. If you
navigate to http://zf-tutorial/auth/login then you should see the login form.

What about processing the form after it has been submitted though? To do that, we utilise the
same trick as in the add and edit forms in the IndexController and do the process if the
request method is a post. Change the loginAction() that we have just created:

 Page 4 of 7

zf-tutorial/application/controllers/AuthController.php:
class AuthController extends Zend_Controller_Action

{

...

 function loginAction()

 {

 $this->view->message = '';

 if ($this->_request->isPost()) {

 // collect the data from the user

 Zend_Loader::loadClass('Zend_Filter_StripTags');
 $f = new Zend_Filter_StripTags();

 $username = $f->filter($this->_request->getPost('username'));

 $password = $f->filter($this->_request->getPost('password'));

 if (empty($username)) {

 $this->view->message = 'Please provide a username.';

 } else {

 // setup Zend_Auth adapter for a database table

 Zend_Loader::loadClass('Zend_Auth_Adapter_DbTable');

 $db = Zend_Registry::get('db');

 $authAdapter = new Zend_Auth_Adapter_DbTable($db);

 $authAdapter->setTableName('users');

 $authAdapter->setIdentityColumn('username');

 $authAdapter->setCredentialColumn('password');

 // Set the input credential values to authenticate against

 $authAdapter->setIdentity($username);

 $authAdapter->setCredential($password);

 // do the authentication

 $auth = Zend_Auth::getInstance();

 $result = $auth->authenticate($authAdapter);

 if ($result->isValid()) {

 // success: store database row to auth's storage

 // system. (Not the password though!)
 $data = $authAdapter->getResultRowObject(null,

 'password');

 $auth->getStorage()->write($data);

 $this->_redirect('/');

 } else {

 // failure: clear database row from session

 $this->view->message = 'Login failed.';

 }

 }

 }

 $this->view->title = "Log in";

 }

}

Quite a lot is going on here, so lets go through it:

 // collect the data from the user

 Zend_Loader::loadClass('Zend_Filter_StripTags');

 $f = new Zend_Filter_StripTags();

 $username = $f->filter($this->_request->getPost('username'));

 $password = $f->filter($this->_request->getPost('password'));

 if (empty($username)) {

 $this->view->message = 'Please provide a username.';

 } else {

As usual we set up a filter and then extract the username and password fields from the POST
data. Note that we use the request’s getPost() function as it will handle the isset() check for us
and return an empty string if the field doesn’t exist in the POST array. If the username is
empty, then there’s not a lot of point in trying to authenticate (and Zend_Auth will throw an
exception if we try!), so we check for an empty username and inform the user instead.

 Page 5 of 7

 // setup Zend_Auth adapter for a database table

 Zend_Loader::loadClass('Zend_Auth_Adapter_DbTable');

 $db = Zend_Registry::get('db');

 $authAdapter = new Zend_Auth_Adapter_DbTable($db);

 $authAdapter->setTableName('users');

 $authAdapter->setIdentityColumn('username');

 $authAdapter->setCredentialColumn('password');

Zend_Auth uses an adapter system to allow you to use any number of systems to actually do
the authentication bit. We want to use a database table and so use
Zend_Auth_Adapter_DbTable. To set up an adapter, you tell it the fields to use and pass in a
valid connection to the database.

 // Set the input credential values to authenticate against

 $authAdapter->setIdentity($username);

 $authAdapter->setCredential($password);

We need to tell the adapter exactly the username and password that the user has filled in on
the form.

 // do the authentication

 $auth = Zend_Auth::getInstance();

 $result = $auth->authenticate($authAdapter);

To actually authenticate, we call the authenticate() function of Zend_Auth. This ensures that
the results of the authentication are stored into the session automatically for us.

 if ($result->isValid()) {

 // success : store database row to auth's storage

 // system. (not the password though!)

 $data = $authAdapter->getResultRowObject(null,

 'password');

 $auth->getStorage()->write($data);

 $this->_redirect('/');

In the case of success, we store the full database row (except the password!) into the
Zend_Auth singleton. This ensures we can collect the user’s name for display in the footer.

 } else {

 // failure: clear database row from session

 $this->view->message = 'Login failed.';

 }

 }

In the case of authentication failure, we set the message so that the user knows what has
happened.

The authentication process for logging in is now complete.

Logging out
Logging out is much simpler than logging in as all we need to do is tell the Zend_Auth
singleton to clear its data. This is done in a new action logoutAction() within the
AuthController so that we can navigate to http://zftutorial/auth/logout so that the user is logged
out:

zf-tutorial/application/controllers/AuthController.php:

class AuthController extends Zend_Controller_Action

{

...

 function logoutAction()

 {

 Zend_Auth::getInstance()->clearIdentity();

 Page 6 of 7

 $this->_redirect('/');

 }

}

The logoutAction() function is so trivial, I can’t think of anything to say about it!

We now need to provide the user with a link so that they can log out of the application. This is
easiest in the footer. We will also tell the user their name, so that they can be confident that
they are logged in correctly. Their name is stored in the real_name field of the users table and
so that is now available in the Zend_Auth instance. First thing to do is to get it to the view,
which we do in the init() function of IndexController():

zf-tutorial/application/controllers/IndexController.php:

class IndexController extends Zend_Controller_Action

{

 function init()

 {

 $this->initView();

 Zend_Loader::loadClass('Album');

 $this->view->baseUrl = $this->_request->getBaseUrl();

 $this->view->user = Zend_Auth::getInstance()->getIdentity();

 }

...

}

It’s certainly convenient that Zend_Auth is a singleton, otherwise we’d have stored it in the
registry, by now!

We now need to add some HTML to footer.phtml:

zf-tutorial/application/views/scripts/footer.phtml:

<?php if($this->user) : ?>

<p id="logged-in">Logged in as <?php

 echo $this->escape($this->user->real_name);?>.

<a href="<?php echo $this->baseUrl ?>/auth/logout">Logout</p>

<?php endif; ?>

</div>

</body>

</html>

This HTML should look quite familiar as there are no new concepts here. We use escape() to
ensure that the user’s real name is safely displayed correctly and we use baseUrl to set the
anchor’s href to the correct place.

That’s all that’s required for logout.

Protecting the Actions

All that’s left is to ensure that no other actions are accessible if you are not logged in. To do
that, we need to add some code to the preDispatch() function of IndexController.

zf-tutorial/application/controllers/IndexController.php:

class IndexController extends Zend_Controller_Action

{

...

 function preDispatch()

 {

 $auth = Zend_Auth::getInstance();

 if (!$auth->hasIdentity()) {

 $this->_redirect('auth/login');

 }

 }

...

 Page 7 of 7

}

preDispatch() is called before every action in the controller. We collect the Zend_Auth
instance and then its hasIdentity() function tells us if we a user is logged in. If we don’t then
we redirect to the auth/login action.

And that’s all there is to it!

Conclusion
This concludes our brief look at integrating Zend_Auth into an MVC application. Clearly there
is a lot more you could do with Zend_Auth and there are many ways to improve the way the
code works, especially if you have multiple controllers to be protected. Note that we haven’t
looked in detail at authorisation here as that is covered by the Zend_Acl components.
Zend_Acl would be used in conjunction with Zend_Auth for providing different levels of
access to actions or data, but that is the subject of another tutorial.

I hope that you found it interesting and informative. If you find anything that’s wrong, please
email me at rob@akrabat.com.

