
Creating Models

Rob Allen, June 2014

I make business websites
19ft.com

The business logic is the
hard part

MVC

MVC

The model is the
solution to a problem

A problem
A customer wants to plan a journey between two
stations.

How do we model this?

Identify the key objects
• Customer
• Journey
• Station
• Line

E-R Diagram

Entities represent things in
the problem-space

Entity
• Means something to the customer
• An object defined primarily by its identity
• Mutable
• Persisted
• Has a life cycle

Identity
• The identity of an object is what it means to the

customer
• Unique within the scope of the domain

For a tube station, this is it’s name, not its database id.

My customer is never going to talk to me about station
43, they are going to say “Euston Square”.

Value objects
• Defined primarily by its attributes
• Immutable
• Simple!
• Do not exist without an entity

A station has a location

A station has a location

Domain services
If a SERVICE were devised to make appropriate
debits and credits for a funds transfer, that capability
would belong in the domain layer.

Eric Evans

Domain services
• We map the business processes to services
• Represents behaviour in the domain
• A service does not have internal state
• Usually a point of connection for many objects

Let’s look at some code

Some code
class Journey {

 function getStart() {}

 function setStart(Station $start) {}

 function getStop() {}

 function setStop(Station $stop) {}

 function setRoute() {}

 function getRoute() {}

}

class RoutingService {

 function route(Station $start, Station $stop) {}

}

Anaemic domain model
When you look at the behavior, and you realize that
there is hardly any behavior on these objects,
making them little more than bags of getters and
setters.

Instead there are a set of service objects which
capture all the domain logic.

Martin Fowler

Entity with behaviour
class Journey {

 function getStart() {}

 function setStart(Station $start) {}

 function getStop() {}

 function setStop(Station $stop) {}

 function route() {}

}

What happens if route() is
complex?

Double dispatch
The entity calls the helper domain service, passing a
reference to itself.

// Helper service

class JourneyRouter {

 function route(Journey $journey) {}

}

// Journey class

function route() {

 $router = $new JourneyRouter();

 $this->route = $router->route($this);

}

Persistence

Persistence options

A simple domain model can use ActiveRecord/TDG;
a complex one will require mapping.

I don’t really care what you choose!

I lied.

Don’t use ActiveRecord!

It integrates the database code into
your domain model

Table Data Gateway
• Operates on a single database table
• Contains all the SQL for accessing the table
• Doesn’t know anything about the entity.
• Simple to implement

Table Data Gateway
class JourneyGateway {

 function __construct($dsn, $username, $password) {}

 function find($id) {}

 function findForStartingStation($stationId) {}

 function insert($startId, $stopId) {}

 function update($id, $startId, $stopId) {}

}

Data Mapper
• Class to transfer data from objects to the database

and back.
• Entity aware
• Isolates the domain model from the database
• Not limited to a single table

Data Mapper
class JourneyMapper {

 function __construct($dsn, $username, $password) {}

 function find($id) {}

 function findForStartingStation($stationId) {}

 public function save(Journey $journey) {}

}

Increased scope: ORM
Data mappers can be limited in scope to an entity or
generic enough to work with full object graphs.

This is known as Object Relational Mapping

Persistence layer is more complicated:

• Identity map to hold loaded objects
• Storage of entire object graphs to the database
• Unit of Work to track changed objects for saving

If you need this, then use a pre-written ORM library!

Web services
• The persistence storage could be a web service.
• Data mappers work really well

Integrating our model into
the application

The service layer*
It does not contain business rules or knowledge, but
only coordinates tasks and delegates work to
collaborations of domain objects in the next layer
down.

Eric Evans

* (Known as application layer in DDD)

Service layer
We can sub-divide:

• Application services
• Infrastructural services

Application services
If the banking application can convert and export our
transactions into a spreadsheet file for us to analyze,
this is an application SERVICE.

Eric Evans

Infrastructural services
A bank might have an application that sends out an
email to a customer when an account balance falls
below a specific threshold. The interface that
encapsulates the email system, and perhaps
alternate means of notification, is a SERVICE in the
infrastructure layer.

Eric Evans

Application service
class JourneyService {

 function createJourney($customer, $start, $stop)

 {

 $journey = $customer->createJourney($start,$stop);

 $journey->route();

 $this->entityManager->flush();

 $this->mailer->newJourneyNofication($journey);

 $this->auditor->log('newJourney', $journey);

 }

}

Beware the Fat service
Decouple using Observer pattern

CQRS: Separating reading
and writing

CQRS
Command Query Responsibility Segregation.

• Commands change data
• Queries read data

Most useful when:

• Separate hardware
• Optimise performance

CQRS at its most basic
Two services where there was one

CQRS
One useful case is a summary object for a read-only list

Final point

The success of a design is not necessarily marked
by its longevity. It is the nature of software to
change.

Eric Evans

To sum up
Entity:

Object with identity that do stuff

Value object:
Immutable with no identity

Domain service:
Behaviours that don’t belong to an entity

To sum up
Mappers / Repository:

Transfer your model to and from persistence

Application services:
Isolate your domain model from your controllers

Infrastructure services:
Support services for your application

Thank you!
https://joind.in/10881

Rob Allen - http://akrabat.com - @akrabat

https://joind.in/10881
http://akrabat.com

	MVC
	MVC
	A problem
	Identify the key objects
	E-R Diagram
	Entity
	Identity
	Value objects
	A station has a location
	A station has a location
	Domain services
	Domain services
	Some code
	Anaemic domain model
	Entity with behaviour
	Double dispatch
	Persistence options
	Table Data Gateway
	Table Data Gateway
	Data Mapper
	Data Mapper
	Increased scope: ORM
	Web services
	The service layer*
	Service layer
	Application services
	Infrastructural services
	Application service
	Beware the Fat service
	CQRS
	CQRS at its most basic
	CQRS
	To sum up
	To sum up

