
Introducing
Zend Framework 3

Rob Allen ~ @akrabat ~ February 2016

What did ZF2 give us?
• Dependency injection
• Event-driving architecture
• Standalone, first-class modules

What's wrong with ZF2?

The PHP world has changed
since 2012

So what's the ZF3 story?

The ZF3 story
• Componentisation
• Performance and usability
• MVC improvements!
• Focus on PSR-7, Interoperability & Middleware

PHP 5.5

Components

Components
• Separate repositories

Components
• Separate repositories
• PSR-4 structure for source and tests

Components
• Separate repositories
• PSR-4 structure for source and tests
• Separate evolution

Components
• Separate repositories
• PSR-4 structure for source and tests
• Separate evolution
• Documentation in repository

Components
• Separate repositories
• PSR-4 structure for source and tests
• Separate evolution
• Documentation in repository
• All issues in the right place on GitHub

Components
• Separate repositories
• PSR-4 structure for source and tests
• Separate evolution
• Documentation in repository
• All issues in the right place on GitHub
• More maintainers

ZF MVC framework

MVC improvements
• ZF2 is now a meta package

The framework will selectively upgrade, but each component can evolve
separately Easier to slim down to just the components needed Leads to
Use-case specific skeletons

MVC improvements
• ZF2 is now a meta package
• ZF3 will have fewer dependencies - just what's needed for MVC

MVC improvements
• ZF2 is now a meta package
• ZF3 will have fewer dependencies - just what's needed for MVC
• Managed BC breaks

MVC improvements
• ZF2 is now a meta package
• ZF3 will have fewer dependencies - just what's needed for MVC
• Managed BC breaks
• First 3.0 MVC components:

• ServiceManager
• EventManager

Other components : ZendHydrator and ZendCode are at 3.0 (Code supports
PHP 5.5, 5/6 & 7 (scalar typehints, return typehints, generators, and variadics.)

Zend\ServiceManager 3.0
• Container-interop

Zend\ServiceManager 3.0
• Container-interop
• Consistent interfaces

Zend\ServiceManager 3.0
• Container-interop
• Consistent interfaces
• Re-use factories for multiple named services

Zend\ServiceManager 3.0
• Container-interop
• Consistent interfaces
• Re-use factories for multiple named services
• New method: build() for factories

Zend\ServiceManager 3.0
• Container-interop
• Consistent interfaces
• Re-use factoriers for multiple named services
• New method: build() for factories
• Immutable

Zend\ServiceManager 3.0
• Container-interop
• Consistent interfaces
• Re-use factoriers for multiple named services
• New method: build() for factories
• Immutable
• Fast! (4x to 20x faster!)

Zend\ServiceManager 3.0
• Container-interop
• Consistent interfaces
• Re-use factoriers for multiple named services
• New method: build() for factories
• Immutable
• Fast! (4x to 20x faster!)
• Mostly backwards compatible

Zend\ServiceManager 3.0 Key Changes
• Service name are case sensitive and no longer normalised
• Constructor now takes an array, not a Config object
• New interfaces for factories: __invoke()
• PluginManager factories are now passed the parent ServiceManager

Zend\EventManager 3.0
• Fast! (4x to 15x faster!)
• Usability improvements to trigger()
• Mostly backwards compatible still

Zend\EventManager 3.0 Key Changes
• GlobalEventManager and StaticEventManager have been removed

Zend\EventManager 3.0 Key Changes
• GlobalEventManager and StaticEventManager have been removed
• Listener aggregates have been removed

Zend\EventManager 3.0 Key Changes
• GlobalEventManager and StaticEventManager have been removed
• Listener aggregates have been removed
• EventManager::__construct() signature has changed

Zend\EventManager 3.0 Key Changes
• GlobalEventManager and StaticEventManager have been removed
• Listener aggregates have been removed
• EventManager::__construct() signature has changed
• trigger() changes:

trigger($eventName, $target = null, $argv = [])

triggerUntil(callable $callback, $eventName, $target = null, $argv = [])

triggerEvent(EventInterface $event)

triggerEventUntil(callable $callback, EventInterface $event)

Zend\Mvc 3.0
• Updated for zend-servicemanger 3.0 changes
• Updated for zend-eventmanger 3.0 changes
• New MiddlewareListener and PSR-7 bridge

It's bascially the same!

Where is the PHP community
going?

The future
• Dependence on abstractions: PSR-7, PSR-3, container-interop, etc
• Building applications from components in Packagist
• The framework should get out of the way of your code

PSR-7, Interoperability &
Middleware

It's all about HTTP
Request:

{METHOD} {URI} HTTP/1.1

Header: value1,value2

Another-Header: value

Message body

Response:

HTTP/1.1 {STATUS_CODE} {REASON_PHRASE}

Header: value

Message body

Current PHP
Request:

• $_SERVER, $_GET, $_POST, $_COOKIE, $_FILES
• apache_request_headers()
• php://input

Response:

• header()
• echo (& ob_*() family)

PSR-7
It's just some interfaces

• RequestInterface (& ServerRequestInterface)
• ResponseInterface
• UriInterface
• UploadedFileInterface

Two key things about PSR-7

Key feature 1: Immutability
Request, Response, Uri & UploadFile are immutable

$uri = new Uri('https://api.joind.in/v2.1/events');

$uri2 = $uri->withQuery('?filter=upcoming');

$request = (new Request())

 ->withMethod('GET')

 ->withUri($uri2)

 ->withHeader('Accept', 'application/json')

 ->withHeader('Authorization', 'Bearer 0873418d');

Key feature 2: Streams
Message bodies are streams

$body = new Stream();

$body->write('<p>Hello');

$body->write('World</p>');

$response = (new Response())

 ->withStatus(200, 'OK')

 ->withHeader('Content-Type', 'application/header')

 ->withBody($body);

Diactoros
ZF's PSR-7 implementation

Diactoros
• Complete PSR-7 implementation

Diactoros
• Complete PSR-7 implementation
• Specialised Responses: JSON, Empty & Redirect

Diactoros
• Complete PSR-7 implementation
• Specialised Responses: JSON, Empty & Redirect
• Bridges:

• Used by Symfony for their PSR-7 bridge
• zend-psr7bridge: ZF3's PSR-7 to zend-http bridge

Middleware

Middleware

Middleware
function (ServerRequestInterface $request, ResponseInterface $response,

 callable $next = null) : ResponseInterface

{

 // do something before

 // call through to next middleware

 if ($next) {

 $response = $next($request, $response);

 }

 // do something with $response after

 return $response;

}

Writing middleware
Pattern:

• Optionally modify the received request and response
• Optionally invoke the next middleware

• Optionally modify the returned response

• Return the response to the previous middleware.

Stratigility
ZF's Middleware implementation

Stratigility
• Dispatches a stack of middleware

Stratigility
• Dispatches a stack of middleware

• Middleware format:

• Any callable
• Zend\Stratigility\MiddlewareInterface

 public function __invoke(

 ServerRequestInterface $request,

 ResponseInterface $response,

 callable $out = null

) : ResponseInterface;

ErrorMiddleware
Pass error as third parameter to $next:

return $next($request, $response, $error);

ErrorMiddleware
Pass error as third parameter to $next:

return $next($request, $response, $error);

Handle like this:

function ($error,

 ServerRequestInterface $request,

 ResponseInterface $response,

 callable $out

);

or Zend\Stratigility\ErrorMiddlewareInterface

Path segregation:
use Zend\Stratigility\MiddlewarePipe();

$app = new MiddlewarePipe();

$app->pipe($mw1); // always evaluate

$app->pipe('/blog', $blogMw); // only if path matches

$app->pipe('/contact', $contactMw);

$app->pipe($outputMw);

$server = Server::createServer($app, …);

$server->listen();

Nesting Middleware
Compose middleware together based on path:

$blog = new MiddlewarePipe();

$blog->pipe('/post', $postMw);

$blog->pipe('/feed', $rssMw);

$blog->pipe('/', $listMw);

$app = new MiddlewarePipe();

$app->pipe('/blog', $blog);

Middleware wrappers
$app->pipe('/', $homepage); // Static HTML

$app->pipe('/customer', $zf2Middleware); // ZF2

$app->pipe('/products', $zf1Middleware); // ZF1

$app->pipe('/api', $apigility); // Apigility

$app->pipe('/user', $userMiddleware); // 3rd party

What about routing?
(& DI container, etc…)

Integration with ZF-MVC
Routing to Middleware via the new MiddlwareListener:

'oauth' => [

 'type' => 'Literal',

 'options' => [

 'route' => '/oauth',

 'defaults' => [

 'middleware' => OauthMiddleware::class,

],

],

],

Expressive
ZF's micro framework

Expressive
• Provides and consumes a routing interface
• Pulls matched middleware from ContainerInterface
• Provides an optional templating interface
• Provides error handling

Agnostic
Router:

• FastRoute, Aura.Router or Zend Router

DI Container:

• Zend ServiceManager, Pimple, Aura.Di (or any container-interop DIC)

Template:

• Plates, Twig or Zend View

Installation
$ composer create-project zendframework/zend-expressive-skeleton new-app

Hello world
use Zend\Expressive\AppFactory;

$app = AppFactory::create();

$app->get(

 '/hello/{name}',

 function ($request, $response, $next) {

 $name = htmlentities($request->getAttribute('name'));

 $response->getBody()->write("<p>Hello, $name!</p>");

 return $next($request, $response);

 }

);

$app->pipeRoutingMiddleware();

$app->pipeDispatchMiddleware();

$app->run();

Middleware pipes
$app->get('/', $homepageMiddleware);

$app->get('/contact', $contactMiddleware);

$app->pipe($sessionMiddleware);

$app->pipe($authMiddleware);

$app->pipeRoutingMiddleware();

$app->pipeDispatchMiddleware();

$app->run();

Named routes
3rd parameter:

$app->get('/books/{id}', $getBookAction, 'book');

Build URI:

$url = $router->generateUri('edit', ['id' => 1]);

Views
No templating by default. Abstracted via
Zend\Expressive\Template\TemplateRendererInterface

$html = $templates->render('book::detail', [

 'layout' => 'master',

 'book' => $bookEntity,

]);

return new HtmlResponse($html);

Why Expressive?
• Performance

Why Expressive?
• Performance
• Developer experience

Why Expressive?
• Performance
• Developer experience
• Reusable middleware

This is the ZF3 era

The ZF3 era
• Separate components
• ZF2 MVC with performance improvements
• Stratigility PSR-7 middleware foundation
• Expressive micro framework

Questions?

https://joind.in/talk/6f3ba

Rob Allen - http://akrabat.com - @akrabat

https://joind.in/talk/6f3ba
http://akrabat.com

Thank you!

https://joind.in/talk/6f3ba

Rob Allen - http://akrabat.com - @akrabat

https://joind.in/talk/6f3ba
http://akrabat.com

	The ZF3 story
	Components
	Components
	Components
	Components
	Components
	Components
	MVC improvements
	MVC improvements
	MVC improvements
	MVC improvements
	Zend\ServiceManager 3.0
	Zend\ServiceManager 3.0
	Zend\ServiceManager 3.0
	Zend\ServiceManager 3.0
	Zend\ServiceManager 3.0
	Zend\ServiceManager 3.0
	Zend\ServiceManager 3.0
	Zend\ServiceManager 3.0 Key Changes
	Zend\EventManager 3.0
	Zend\EventManager 3.0 Key Changes
	Zend\EventManager 3.0 Key Changes
	Zend\EventManager 3.0 Key Changes
	Zend\EventManager 3.0 Key Changes
	Zend\Mvc 3.0
	The future
	It's all about HTTP
	Current PHP
	PSR-7
	Key feature 1: Immutability
	Key feature 2: Streams
	Diactoros
	Diactoros
	Diactoros
	Middleware
	Middleware
	Writing middleware
	Stratigility
	Stratigility
	ErrorMiddleware
	ErrorMiddleware
	Path segregation:
	Nesting Middleware
	Middleware wrappers
	Integration with ZF-MVC
	Expressive
	Agnostic
	Installation
	Hello world
	Middleware pipes
	Named routes
	Views
	Why Expressive?
	Why Expressive?
	Why Expressive?
	The ZF3 era

