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What did ZF2 give us?
• Dependency injection
• Event-driving architecture
• Standalone, first-class modules



What's wrong with ZF2?



The PHP world has changed
since 2012



So what's the ZF3 story?



The ZF3 story
• Componentisation
• Performance and usability
• MVC improvements!
• Focus on PSR-7, Interoperability & Middleware



PHP 5.5
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Components
• Separate repositories
• PSR-4 structure for source and tests
• Separate evolution
• Documentation in repository
• All issues in the right place on GitHub
• More maintainers



ZF MVC framework



MVC improvements
• ZF2 is now a meta package

The framework will selectively upgrade, but each component can evolve
separately Easier to slim down to just the components needed Leads to
Use-case specific skeletons
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MVC improvements
• ZF2 is now a meta package
• ZF3 will have fewer dependencies - just what's needed for MVC
• Managed BC breaks
• First 3.0 MVC components:

• ServiceManager
• EventManager

Other components : ZendHydrator and ZendCode are at 3.0 (Code supports
PHP 5.5, 5/6 & 7 (scalar typehints, return typehints, generators, and variadics.)
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Zend\ServiceManager 3.0
• Container-interop
• Consistent interfaces
• Re-use factoriers for multiple named services
• New method: build() for factories
• Immutable
• Fast! (4x to 20x faster!)
• Mostly backwards compatible



Zend\ServiceManager 3.0 Key Changes
• Service name are case sensitive and no longer normalised
• Constructor now takes an array, not a Config object
• New interfaces for factories: __invoke()
• PluginManager factories are now passed the parent ServiceManager



Zend\EventManager 3.0
• Fast! (4x to 15x faster!)
• Usability improvements to trigger()
• Mostly backwards compatible still
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Zend\EventManager 3.0 Key Changes
• GlobalEventManager and StaticEventManager have been removed
• Listener aggregates have been removed
• EventManager::__construct() signature has changed
• trigger() changes:

trigger($eventName, $target = null, $argv = [])

triggerUntil(callable $callback, $eventName, $target = null, $argv = [])

triggerEvent(EventInterface $event)

triggerEventUntil(callable $callback, EventInterface $event)



Zend\Mvc 3.0
• Updated for zend-servicemanger 3.0 changes
• Updated for zend-eventmanger 3.0 changes
• New MiddlewareListener and PSR-7 bridge

It's bascially the same!



Where is the PHP community
going?



The future
• Dependence on abstractions: PSR-7, PSR-3, container-interop, etc
• Building applications from components in Packagist
• The framework should get out of the way of your code



PSR-7, Interoperability &
Middleware



It's all about HTTP
Request:

{METHOD} {URI} HTTP/1.1

Header: value1,value2

Another-Header: value

Message body

Response:

HTTP/1.1 {STATUS_CODE} {REASON_PHRASE}

Header: value

Message body



Current PHP
Request:

• $_SERVER, $_GET, $_POST, $_COOKIE, $_FILES
• apache_request_headers()
• php://input

Response:

• header()
• echo (& ob_*() family)



PSR-7
It's just some interfaces

• RequestInterface (& ServerRequestInterface)
• ResponseInterface
• UriInterface
• UploadedFileInterface



Two key things about PSR-7



Key feature 1: Immutability
Request, Response, Uri & UploadFile are immutable

$uri = new Uri('https://api.joind.in/v2.1/events');

$uri2 = $uri->withQuery('?filter=upcoming');

$request = (new Request())

    ->withMethod('GET')

    ->withUri($uri2)

    ->withHeader('Accept', 'application/json')

    ->withHeader('Authorization', 'Bearer 0873418d');



Key feature 2: Streams
Message bodies are streams

$body = new Stream();

$body->write('<p>Hello');

$body->write('World</p>');

$response = (new Response())

    ->withStatus(200, 'OK')

    ->withHeader('Content-Type', 'application/header')

    ->withBody($body);



Diactoros
ZF's PSR-7 implementation
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Diactoros
• Complete PSR-7 implementation
• Specialised Responses: JSON, Empty & Redirect
• Bridges:

• Used by Symfony for their PSR-7 bridge
• zend-psr7bridge: ZF3's PSR-7 to zend-http bridge



Middleware



Middleware



Middleware
function (ServerRequestInterface $request, ResponseInterface $response,

    callable $next = null) : ResponseInterface

{

    // do something before

    // call through to next middleware

    if ($next) {

        $response = $next($request, $response);

    }

    // do something with $response after

    return $response;

}



Writing middleware
Pattern:

• Optionally modify the received request and response
• Optionally invoke the next middleware

• Optionally modify the returned response

• Return the response to the previous middleware.



Stratigility
ZF's Middleware implementation
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• Dispatches a stack of middleware



Stratigility
• Dispatches a stack of middleware

• Middleware format:

• Any callable
• Zend\Stratigility\MiddlewareInterface

    public function __invoke(

        ServerRequestInterface $request,

        ResponseInterface $response,

        callable $out = null

    ) : ResponseInterface;



ErrorMiddleware
Pass error as third parameter to $next:

return $next($request, $response, $error);



ErrorMiddleware
Pass error as third parameter to $next:

return $next($request, $response, $error);

 
Handle like this:

function ($error,

    ServerRequestInterface $request,

    ResponseInterface $response,

    callable $out

);

or Zend\Stratigility\ErrorMiddlewareInterface



Path segregation:
use Zend\Stratigility\MiddlewarePipe();

$app = new MiddlewarePipe();

$app->pipe($mw1);                   // always evaluate

$app->pipe('/blog', $blogMw);       // only if path matches

$app->pipe('/contact', $contactMw);

$app->pipe($outputMw);

$server = Server::createServer($app, …);

$server->listen();



Nesting Middleware
Compose middleware together based on path:

$blog = new MiddlewarePipe();

$blog->pipe('/post', $postMw);

$blog->pipe('/feed', $rssMw);

$blog->pipe('/', $listMw);

$app = new MiddlewarePipe();

$app->pipe('/blog', $blog);



Middleware wrappers
$app->pipe('/', $homepage);              // Static HTML

$app->pipe('/customer', $zf2Middleware); // ZF2

$app->pipe('/products', $zf1Middleware); // ZF1

$app->pipe('/api', $apigility);          // Apigility

$app->pipe('/user', $userMiddleware);    // 3rd party



What about routing?
(& DI container, etc…)



Integration with ZF-MVC
Routing to Middleware via the new MiddlwareListener:

'oauth' => [

    'type' => 'Literal',

    'options' => [

        'route' => '/oauth',

        'defaults' => [

            'middleware' => OauthMiddleware::class,

        ],

    ],

],



Expressive
ZF's micro framework



Expressive
• Provides and consumes a routing interface
• Pulls matched middleware from ContainerInterface
• Provides an optional templating interface
• Provides error handling



Agnostic
Router:

• FastRoute, Aura.Router or Zend Router

DI Container:

• Zend ServiceManager, Pimple, Aura.Di (or any container-interop DIC)

Template:

• Plates, Twig or Zend View



Installation
$ composer create-project zendframework/zend-expressive-skeleton new-app



Hello world
use Zend\Expressive\AppFactory;

$app = AppFactory::create();

$app->get(

  '/hello/{name}',

  function ($request, $response, $next) {

    $name = htmlentities($request->getAttribute('name'));

    $response->getBody()->write("<p>Hello, $name!</p>");

    return $next($request, $response);

  }

);

$app->pipeRoutingMiddleware();

$app->pipeDispatchMiddleware();

$app->run();



Middleware pipes
$app->get('/', $homepageMiddleware);

$app->get('/contact', $contactMiddleware);

$app->pipe($sessionMiddleware);

$app->pipe($authMiddleware);

$app->pipeRoutingMiddleware();

$app->pipeDispatchMiddleware();

$app->run();



Named routes
3rd parameter:

$app->get('/books/{id}', $getBookAction, 'book');

Build URI:

$url = $router->generateUri('edit', ['id' => 1]);



Views
No templating by default. Abstracted via
Zend\Expressive\Template\TemplateRendererInterface

$html = $templates->render('book::detail', [

    'layout' => 'master',

    'book' => $bookEntity,

]);

return new HtmlResponse($html);
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• Performance
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Why Expressive?
• Performance
• Developer experience
• Reusable middleware



This is the ZF3 era



The ZF3 era
• Separate components
• ZF2 MVC with performance improvements
• Stratigility PSR-7 middleware foundation
• Expressive micro framework



Questions?

https://joind.in/talk/6f3ba

Rob Allen - http://akrabat.com - @akrabat

https://joind.in/talk/6f3ba
http://akrabat.com


Thank you!

https://joind.in/talk/6f3ba

Rob Allen - http://akrabat.com - @akrabat

https://joind.in/talk/6f3ba
http://akrabat.com
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