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Fit for Purpose
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But first…

Your target audience matters!

Rob Allen ~ @akrabat



Features of a good API
Malleability
Correctness
Client focus
Documented
Secure
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A good API is malleable
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Malleability
• The representation is independent of the DB schema
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It's about focus
Different objectives

• API is client focussed, DB schema is application focussed
• Representation of data is different
• Your API becomes brittle
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Malleability
• The representation is independent of the DB schema
• Design is based on state changes
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Workflows are more than CRUD
• Operations are a series of steps
• Think about goals and sequences of actions
• Make it easy for a user to accomplish their tasks!
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Malleability
• The representation is independent of the DB schema
• Design is based on state changes
• Hypermedia aware
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Hypermedia
Hypermedia as the source of client flexibility!

• Rename endpoints at will
• Re-home endpoints on different servers (e.g. CDN resources)
• API is explorable
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A good API is correct
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Correct
• Media type format suits the design
• Correct use of HTTP verbs
• Understanding of Idempotency
• Richardson Maturity Model 2+
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Media types matter
With application/json you abdicate responsibility.
The correct media type:

• Tells the client how to interpret the data
• Enforces structure of the payload
• Informs on what the payload data means
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HTTP verbs
Method Used for Idempotent?
GET Retrieve data Yes
PUT Change data Yes
DELETE Delete data Yes
POST Change data No
PATCH Update data No
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Richardson Maturity Model

source: http://martinfowler.com/articles/richardsonMaturityModel.html
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A good API respects the client dev
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Great error handling
• Error representations are first class citizens

• Honours accept header
• Correct content-type
• Uses correct HTTP status code

• Provides application error code & human readable message
• ideally in a known media type such as api-problem

• Pretty print JSON for the humans!

Rob Allen ~ @akrabat



Error messages
• End user needs a short, descriptive message
• Client developer needs detailed information
• Client application needs an error code
• The API application needs logs!
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Error codes
Send correct HTTP status code

• 2xx for success
• 4xx for failures the client can fix
• 5xx for failures the client cannot fix

Include an application error code

• For the client application to parse
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HTTP Problem (RFC 7807)
HTTP/1.1 503 Service Unavailable

Content-Type: application/problem+json

Content-Language: en

{

   "status": 503,
   "type": "https://example.com/service-unavailable",
   "title": "Could not authorise user due to an internal problem - try later.",
   "detail": "The authentication service is down for maintenance.",
   "instance": "https://example.com/maintenance-schedule/2016-08-30",
   "error_code": "AUTHSERVICE_UNAVAILABLE"
}

Rob Allen ~ @akrabat



Handling changes
• Avoid major new versions
• Make changes backwards-compatible
• Think about forwards-compatibility
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BC changes
• Add resources
• New verbs to existing resources
• New endpoints
• New format via content negotiation
• Avoid change: New query arguments / new fields
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A new version is a new API
• Creates URL proliferation
• Doesn't matter how you define it:

• api.example.com/v2/user
• api2.example.com/user

• Use Server header for minor and patch info
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Deprecation policy
• Provide plenty of warning
• Remove from test servers first
• Communicate widely
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A good API is documented
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Documentation within the API
• Content-type header
• Link relations
• Profile links
• Structured data
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Profile links
Profile links provide the application semantics (RFC 6906)
In the header:
Link: Link: <https://www.example.com/docs>;rel="profile"

Content-Type: application/hal+json;profile="https://www.example.com/docs"

In the body:
"_links": {

  "profile": {
    "href": "https://www.example.com/docs/"
  }

}
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Structured data
There's no such thing as self-explanatory!
{"christian": "Rob", "patronymic" : "Allen"}
{"forename": "Rob", "surname" : "Allen"}
{"firstname": "Rob", "lastname" : "Allen"}
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Structured data
There's no such thing as self-explanatory!
{"christian": "Rob", "patronymic" : "Allen"}
{"forename": "Rob", "surname" : "Allen"}
{"firstname": "Rob", "lastname" : "Allen"}

 
https://schema.org/Person:

{"givenName" : "Rob", "familyName" : "Allen"}

Rob Allen ~ @akrabat

https://schema.org/Person


Human documentation
• Sensible URLs
• Tutorials
• Semantic information
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Sensible URLs
• The actual URL does not matter to the client API
• It does matter to the client developer!

GET /events

GET /events?filter=upcoming

GET /events/455dbab6

GET /events/455dbab6/talks

GET /talks/6cf948e5

GET /talks/6cf948e5/comments
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The for-human documentation
• Tutorials to show how to use the API
• Describe all the semantic information
• Examples in multiple languages
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A good API is secure
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Security
• SSL
• Authentication
• Rate limited
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Authentication
• HTTP Basic
• OAuth2
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OAuth 2
• Requires an access token
• More than one way to get a token:

• Via username/password
• Via API server

• Tokens are short life with refresh token to get a new one
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Rate limits
Limit by application or user token
Provide information

HTTP 429 Too Many Requests

X-RateLimit-Limit: 5000

X-RateLimit-Remaining: 4999

X-RateLimit-Reset: 1471549573
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To sum up
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Thank you!
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