
5 Features of a
Good API Architecture

Rob Allen

19ft.com ~ @akrabat ~ October 2016

Fit for Purpose

Rob Allen ~ @akrabat

But first…

Your target audience matters!

Rob Allen ~ @akrabat

Features of a good API
Malleability
Correctness
Client focus
Documented
Secure

Rob Allen ~ @akrabat

A good API is malleable

Rob Allen ~ @akrabat

Malleability
• The representation is independent of the DB schema

Rob Allen ~ @akrabat

It's about focus
Different objectives

• API is client focussed, DB schema is application focussed
• Representation of data is different
• Your API becomes brittle

Rob Allen ~ @akrabat

Malleability
• The representation is independent of the DB schema
• Design is based on state changes

Rob Allen ~ @akrabat

Workflows are more than CRUD
• Operations are a series of steps
• Think about goals and sequences of actions
• Make it easy for a user to accomplish their tasks!

Rob Allen ~ @akrabat

Malleability
• The representation is independent of the DB schema
• Design is based on state changes
• Hypermedia aware

Rob Allen ~ @akrabat

Hypermedia
Hypermedia as the source of client flexibility!

• Rename endpoints at will
• Re-home endpoints on different servers (e.g. CDN resources)
• API is explorable

Rob Allen ~ @akrabat

A good API is correct

Rob Allen ~ @akrabat

Correct
• Media type format suits the design
• Correct use of HTTP verbs
• Understanding of Idempotency
• Richardson Maturity Model 2+

Rob Allen ~ @akrabat

Media types matter
With application/json you abdicate responsibility.
The correct media type:

• Tells the client how to interpret the data
• Enforces structure of the payload
• Informs on what the payload data means

Rob Allen ~ @akrabat

HTTP verbs
Method Used for Idempotent?
GET Retrieve data Yes
PUT Change data Yes
DELETE Delete data Yes
POST Change data No
PATCH Update data No

Rob Allen ~ @akrabat

Richardson Maturity Model

source: http://martinfowler.com/articles/richardsonMaturityModel.html

Rob Allen ~ @akrabat

http://martinfowler.com/articles/richardsonMaturityModel.html

A good API respects the client dev

Rob Allen ~ @akrabat

Great error handling
• Error representations are first class citizens

• Honours accept header
• Correct content-type
• Uses correct HTTP status code

• Provides application error code & human readable message
• ideally in a known media type such as api-problem

• Pretty print JSON for the humans!

Rob Allen ~ @akrabat

Error messages
• End user needs a short, descriptive message
• Client developer needs detailed information
• Client application needs an error code
• The API application needs logs!

Rob Allen ~ @akrabat

Error codes
Send correct HTTP status code

• 2xx for success
• 4xx for failures the client can fix
• 5xx for failures the client cannot fix

Include an application error code

• For the client application to parse

Rob Allen ~ @akrabat

HTTP Problem (RFC 7807)
HTTP/1.1 503 Service Unavailable

Content-Type: application/problem+json

Content-Language: en

{

 "status": 503,
 "type": "https://example.com/service-unavailable",
 "title": "Could not authorise user due to an internal problem - try later.",
 "detail": "The authentication service is down for maintenance.",
 "instance": "https://example.com/maintenance-schedule/2016-08-30",
 "error_code": "AUTHSERVICE_UNAVAILABLE"
}

Rob Allen ~ @akrabat

Handling changes
• Avoid major new versions
• Make changes backwards-compatible
• Think about forwards-compatibility

Rob Allen ~ @akrabat

BC changes
• Add resources
• New verbs to existing resources
• New endpoints
• New format via content negotiation
• Avoid change: New query arguments / new fields

Rob Allen ~ @akrabat

A new version is a new API
• Creates URL proliferation
• Doesn't matter how you define it:

• api.example.com/v2/user
• api2.example.com/user

• Use Server header for minor and patch info

Rob Allen ~ @akrabat

Deprecation policy
• Provide plenty of warning
• Remove from test servers first
• Communicate widely

Rob Allen ~ @akrabat

A good API is documented

Rob Allen ~ @akrabat

Documentation within the API
• Content-type header
• Link relations
• Profile links
• Structured data

Rob Allen ~ @akrabat

Profile links
Profile links provide the application semantics (RFC 6906)
In the header:
Link: Link: <https://www.example.com/docs>;rel="profile"

Content-Type: application/hal+json;profile="https://www.example.com/docs"

In the body:
"_links": {

 "profile": {
 "href": "https://www.example.com/docs/"
 }

}

Rob Allen ~ @akrabat

Structured data
There's no such thing as self-explanatory!
{"christian": "Rob", "patronymic" : "Allen"}
{"forename": "Rob", "surname" : "Allen"}
{"firstname": "Rob", "lastname" : "Allen"}

Rob Allen ~ @akrabat

Structured data
There's no such thing as self-explanatory!
{"christian": "Rob", "patronymic" : "Allen"}
{"forename": "Rob", "surname" : "Allen"}
{"firstname": "Rob", "lastname" : "Allen"}

https://schema.org/Person:

{"givenName" : "Rob", "familyName" : "Allen"}

Rob Allen ~ @akrabat

https://schema.org/Person

Human documentation
• Sensible URLs
• Tutorials
• Semantic information

Rob Allen ~ @akrabat

Sensible URLs
• The actual URL does not matter to the client API
• It does matter to the client developer!

GET /events

GET /events?filter=upcoming

GET /events/455dbab6

GET /events/455dbab6/talks

GET /talks/6cf948e5

GET /talks/6cf948e5/comments

Rob Allen ~ @akrabat

The for-human documentation
• Tutorials to show how to use the API
• Describe all the semantic information
• Examples in multiple languages

Rob Allen ~ @akrabat

A good API is secure

Rob Allen ~ @akrabat

Security
• SSL
• Authentication
• Rate limited

Rob Allen ~ @akrabat

Authentication
• HTTP Basic
• OAuth2

Rob Allen ~ @akrabat

OAuth 2
• Requires an access token
• More than one way to get a token:

• Via username/password
• Via API server

• Tokens are short life with refresh token to get a new one

Rob Allen ~ @akrabat

Rate limits
Limit by application or user token
Provide information

HTTP 429 Too Many Requests

X-RateLimit-Limit: 5000

X-RateLimit-Remaining: 4999

X-RateLimit-Reset: 1471549573

Rob Allen ~ @akrabat

To sum up

Rob Allen ~ @akrabat

Thank you!

Rob Allen ~ 19ft.com ~ @akrabat

	But first…
	Features of a good API
	Malleability
	It's about focus
	Malleability
	Workflows are more than CRUD
	Malleability
	Hypermedia
	Correct
	Media types matter
	HTTP verbs
	Richardson Maturity Model
	Great error handling
	Error messages
	Error codes
	HTTP Problem (RFC 7807)
	Handling changes
	BC changes
	A new version is a new API
	Deprecation policy
	Documentation within the API
	Profile links
	Structured data
	Structured data
	Human documentation
	Sensible URLs
	The for-human documentation
	Security
	Authentication
	OAuth 2
	Rate limits

