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The business logic
is the hard part

Rob Allen ~ @akrabat



MVC
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MVC
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DDD is an approach to help
you manage the model
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Domain Driven Design
A set of patterns for the model:

• Language
• Strategy
• Tactical
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Domain
The domain is the "real-world" subject of the project
The model is an abstraction of the domain

We communicate the model using:

• diagrams
• use-cases
• specifications
• etc.
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Is DDD the right choice?
DDD requires time, effort and collaboration with the business experts.
Benefits:

• Useful model of the problem domain
• Collaboration between the business & the software teams
• Better user experiences with the software
• Better architecture through better understanding

Rob Allen ~ @akrabat



"We have really everything in common with America
nowadays except, of course, language"

Oscar Wilde
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Ubiquitous Language
• A common language between the developers and the business
• Limited to how the domain problem
• Describes how business itself thinks and operates
• Ensures that the team are all on the same page

The UL is the agreed concepts, meanings and terms for the project.
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Creating the Ubiquitous Language
Conversations in the team exploring how the business operates.

• Identify the business processes
• Find the inputs and outputs
• Document it all! pictures, use-cases, glossary, workflow diagrams,

etc.
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Bounded Contexts & Context Maps
The context where our UL is valid is called the Bounded Context
Insurance example:

• Quotation
• Policies
• Underwriting
• Billing
• Customer management
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Putting it into practice
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What's in the model?
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Organising the model
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A problem
A customer wants to plan a journey between two stations.
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How do we model this?
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Identify the key objects
• Customer
• Journey
• Station
• Line
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Identify the relationships
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Entities represent things in the
problem-space
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Entity
• Means something to the customer
• An object defined primarily by its identity
• Mutable
• Persisted
• Has a life cycle
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Identity
• The identity of an object is what it means to the customer
• Unique within the scope of the domain

For a tube station, this is as much its name, as its database ID.
My customer is never going to talk to me about station 43, they are
going to say "Euston Square".
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Value objects
• Defined primarily by its attributes
• Immutable
• Simple!
• Do not exist without an entity
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Entity vs Value Object
“When people exchange dollar bills, they generally do not
distinguish between each unique bill; they only are concerned
about the face value of the dollar bill. In this context, dollar bills are
value objects.
However, the Federal Reserve may be concerned about each
unique bill; in this context each bill would be an entity.”

Wikipedia
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Aggregates
A group of Entities and Value objects that need to be consistent when
persisted.
Example:

• Order
• Line item
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A station has a location
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A station has a location
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Domain services
If a SERVICE were devised to make appropriate debits and credits
for a funds transfer, that capability would belong in the domain
layer.

Eric Evans
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Domain services
• We map the business processes to services
• Represents behaviour in the domain
• A service does not have internal state
• Usually a point of connection for many objects

Rob Allen ~ @akrabat



Domain services
Conditions for using a domain service:

• Calculations requiring input from multiple domain objects
• Performing a significant business process
• Transforming a domain object from one composition to another
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Let's look at some code
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An entity
 1 class Journey {
 2     function getStart() {}
 3     function setStart(Station $start) {}
 4 

 5     function getStop() {}
 6     function setStop(Station $stop) {}
 7 

 8     function getRoute() {}
 9     function setRoute(Route $route) {}
10 }
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A service
1 class RoutingService {
2   pubic function calculateRoute(Station $from, Station $to) : Route {}
3 }
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Anaemic domain model
When you look at the behavior, and you realize that there is hardly
any behavior on these objects, making them little more than bags
of getters and setters.
Instead there are a set of service objects which capture all the
domain logic.

Martin Fowler

Rob Allen ~ @akrabat



Entity with behaviour
1 class Journey {
2     public function __construct (Station $from, Station $to) {}
3 

4     public function calculateRoute() : Route {}
5 }
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What happens if calculateRoute()
is complex?
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Implement as a helper
The entity calls the helper, passing a reference to itself.
 1 // Helper class

 2 class JourneyRouter {
 3     public function calculateRoute(Journey $journey) : Route {}
 4 }

 5 

 6 // Journey class

 7 class Journey {
 8     function calculateRoute() : Route {
 9         $route = $this->journeyRouter->calculateRoute($this);

10     }

11 }
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Persistence

Rob Allen ~ @akrabat



Persistence options
A simple domain model can use TDG or Data Mapper;
a complex one will require Data Mapper or an ORM.
Aggregates need an ORM

Pick the right one!
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But don't use ActiveRecord pattern!
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But don't use ActiveRecord pattern!
It integrates the database code into your domain model
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Table Data Gateway
• Operates on a single database table
• Contains all the SQL for accessing the table
• Doesn't know anything about the entity
• Simple to implement
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Table Data Gateway
1 class JourneyGateway {
2   function __construct($dbAdapter) {}
3 

4   function find($id) {}
5   function findForStartingStation($stationId) {}
6 

7   function insert(array $data) {}
8   function update($id, array $data) {}
9 }
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Data Mapper
• Class to transfer data from objects to the database and back
• Entity aware
• Isolates the domain model from the database
• Not limited to a single table
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Data Mapper
1 class JourneyMapper {
2   function __construct($dsn, $username, $password) {}
3 

4   function find($id) : Journey {}
5   function findForStartingStation($stationId) : [Journey] {}
6 

7   public function save(Journey $journey) {}
8 }
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Increased scope: ORM
Data mapping that works with the object graphs is known as an
Object Relational Mapping
Must-have for aggregates, but use a pre-written ORM library!
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ORM
Persistence layer is more complicated:

• Storage of entire object graphs to the database
• Identity map to hold loaded objects
• Unit of Work to track changed objects for saving
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Repositories
• 1-1 relationship between repository and aggregate
• Manage the loading and storing of aggregates
• Often oriented around collections of aggregates
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Web services
• The persistence storage could be a web service
• Data mappers work really well
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Integrating our model into the
application
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The application layer*
It does not contain business rules or knowledge, but only
coordinates tasks and delegates work to collaborations of domain
objects in the next layer down.

Eric Evans

 
 
 
 
 
 
* (Known as service layer in PoEAA)
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Application layer
We can sub-divide:

• Application services
• Infrastructural services
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Application services
If the banking application can convert and export our transactions
into a spreadsheet file for us to analyze, this is an application
SERVICE.

Eric Evans
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Application service
 1 class JourneyCreator {
 2     public function createJourney(Customer $customer, Station $from, Station $to)
 3     {

 4         $journey = $customer->createJourney($from, $to);

 5         $journey->calculateRoute();

 6 

 7         $this->notifier->send($journey);

 8         $this->auditor->log("Journey created", $journey);

 9     }

10 }

Rob Allen ~ @akrabat



Beware the Fat service
Decouple using Observer pattern
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Infrastructural services
A bank might have an application that sends out an email to a
customer when an account balance falls below a specific
threshold. The interface that encapsulates the email system, and
perhaps alternate means of notification, is a SERVICE in the
infrastructure layer.

Eric Evans
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Infrastructural service
• Standard: there's no business or application logic
• Reusable across applications
• Do not write your own - this is what the ecosystem is for
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To sum up
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To sum up
Ubiquitous Language:

Agreed vocabulary with the business
Bounded Context:

Area of the problem space where the Ubiquitous Language is valid
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To sum up
Entity:

Object with identity that do stuff
Value object:

Immutable with no identity
Domain service:

Behaviours that don't belong to an entity
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To sum up
Mappers / Repository:

Transfer your model to and from persistence
Application services:

Isolate your domain model from your controllers
Infrastructure services:

Support services for your application
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Final point
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The success of a design is not necessarily marked by
its longevity. It is the nature of software to change.

Eric Evans
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Thank you!
 
 

Please rate this talk on EventsXD
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