
DDD for Beginners
Rob Allen

@akrabat ~ January 2017 ~ http://akrabat.com

http://akrabat.com

The business logic
is the hard part

Rob Allen ~ @akrabat

MVC

Rob Allen ~ @akrabat

MVC

Rob Allen ~ @akrabat

DDD is an approach to help
you manage the model

Rob Allen ~ @akrabat

Domain Driven Design
A set of patterns for the model:

• Language
• Strategy
• Tactical

Rob Allen ~ @akrabat

Domain
The domain is the "real-world" subject of the project
The model is an abstraction of the domain

We communicate the model using:

• diagrams
• use-cases
• specifications
• etc.

Rob Allen ~ @akrabat

Is DDD the right choice?
DDD requires time, effort and collaboration with the business experts.
Benefits:

• Useful model of the problem domain
• Collaboration between the business & the software teams
• Better user experiences with the software
• Better architecture through better understanding

Rob Allen ~ @akrabat

"We have really everything in common with America
nowadays except, of course, language"

Oscar Wilde

Rob Allen ~ @akrabat

Ubiquitous Language
• A common language between the developers and the business
• Limited to how the domain problem
• Describes how business itself thinks and operates
• Ensures that the team are all on the same page

The UL is the agreed concepts, meanings and terms for the project.

Rob Allen ~ @akrabat

Creating the Ubiquitous Language
Conversations in the team exploring how the business operates.

• Identify the business processes
• Find the inputs and outputs
• Document it all! pictures, use-cases, glossary, workflow diagrams,

etc.

Rob Allen ~ @akrabat

Bounded Contexts & Context Maps
The context where our UL is valid is called the Bounded Context
Insurance example:

• Quotation
• Policies
• Underwriting
• Billing
• Customer management

Rob Allen ~ @akrabat

Putting it into practice

Rob Allen ~ @akrabat

What's in the model?

Rob Allen ~ @akrabat

Organising the model

Rob Allen ~ @akrabat

A problem
A customer wants to plan a journey between two stations.

Rob Allen ~ @akrabat

How do we model this?

Rob Allen ~ @akrabat

Identify the key objects
• Customer
• Journey
• Station
• Line

Rob Allen ~ @akrabat

Identify the relationships

Rob Allen ~ @akrabat

Entities represent things in the
problem-space

Rob Allen ~ @akrabat

Entity
• Means something to the customer
• An object defined primarily by its identity
• Mutable
• Persisted
• Has a life cycle

Rob Allen ~ @akrabat

Identity
• The identity of an object is what it means to the customer
• Unique within the scope of the domain

For a tube station, this is as much its name, as its database ID.
My customer is never going to talk to me about station 43, they are
going to say "Euston Square".

Rob Allen ~ @akrabat

Value objects
• Defined primarily by its attributes
• Immutable
• Simple!
• Do not exist without an entity

Rob Allen ~ @akrabat

Entity vs Value Object
“When people exchange dollar bills, they generally do not
distinguish between each unique bill; they only are concerned
about the face value of the dollar bill. In this context, dollar bills are
value objects.
However, the Federal Reserve may be concerned about each
unique bill; in this context each bill would be an entity.”

Wikipedia

Rob Allen ~ @akrabat

Aggregates
A group of Entities and Value objects that need to be consistent when
persisted.
Example:

• Order
• Line item

Rob Allen ~ @akrabat

A station has a location

Rob Allen ~ @akrabat

A station has a location

Rob Allen ~ @akrabat

Domain services
If a SERVICE were devised to make appropriate debits and credits
for a funds transfer, that capability would belong in the domain
layer.

Eric Evans

Rob Allen ~ @akrabat

Domain services
• We map the business processes to services
• Represents behaviour in the domain
• A service does not have internal state
• Usually a point of connection for many objects

Rob Allen ~ @akrabat

Domain services
Conditions for using a domain service:

• Calculations requiring input from multiple domain objects
• Performing a significant business process
• Transforming a domain object from one composition to another

Rob Allen ~ @akrabat

Let's look at some code

Rob Allen ~ @akrabat

An entity
 1 class Journey {
 2 function getStart() {}
 3 function setStart(Station $start) {}
 4

 5 function getStop() {}
 6 function setStop(Station $stop) {}
 7

 8 function getRoute() {}
 9 function setRoute(Route $route) {}
10 }

Rob Allen ~ @akrabat

A service
1 class RoutingService {
2 pubic function calculateRoute(Station $from, Station $to) : Route {}
3 }

Rob Allen ~ @akrabat

Anaemic domain model
When you look at the behavior, and you realize that there is hardly
any behavior on these objects, making them little more than bags
of getters and setters.
Instead there are a set of service objects which capture all the
domain logic.

Martin Fowler

Rob Allen ~ @akrabat

Entity with behaviour
1 class Journey {
2 public function __construct (Station $from, Station $to) {}
3

4 public function calculateRoute() : Route {}
5 }

Rob Allen ~ @akrabat

What happens if calculateRoute()
is complex?

Rob Allen ~ @akrabat

Implement as a helper
The entity calls the helper, passing a reference to itself.
 1 // Helper class

 2 class JourneyRouter {
 3 public function calculateRoute(Journey $journey) : Route {}
 4 }

 5

 6 // Journey class

 7 class Journey {
 8 function calculateRoute() : Route {
 9 $route = $this->journeyRouter->calculateRoute($this);

10 }

11 }

Rob Allen ~ @akrabat

Persistence

Rob Allen ~ @akrabat

Persistence options
A simple domain model can use TDG or Data Mapper;
a complex one will require Data Mapper or an ORM.
Aggregates need an ORM

Pick the right one!

Rob Allen ~ @akrabat

But don't use ActiveRecord pattern!

Rob Allen ~ @akrabat

But don't use ActiveRecord pattern!
It integrates the database code into your domain model

Rob Allen ~ @akrabat

Table Data Gateway
• Operates on a single database table
• Contains all the SQL for accessing the table
• Doesn't know anything about the entity
• Simple to implement

Rob Allen ~ @akrabat

Table Data Gateway
1 class JourneyGateway {
2 function __construct($dbAdapter) {}
3

4 function find($id) {}
5 function findForStartingStation($stationId) {}
6

7 function insert(array $data) {}
8 function update($id, array $data) {}
9 }

Rob Allen ~ @akrabat

Data Mapper
• Class to transfer data from objects to the database and back
• Entity aware
• Isolates the domain model from the database
• Not limited to a single table

Rob Allen ~ @akrabat

Data Mapper
1 class JourneyMapper {
2 function __construct($dsn, $username, $password) {}
3

4 function find($id) : Journey {}
5 function findForStartingStation($stationId) : [Journey] {}
6

7 public function save(Journey $journey) {}
8 }

Rob Allen ~ @akrabat

Increased scope: ORM
Data mapping that works with the object graphs is known as an
Object Relational Mapping
Must-have for aggregates, but use a pre-written ORM library!

Rob Allen ~ @akrabat

ORM
Persistence layer is more complicated:

• Storage of entire object graphs to the database
• Identity map to hold loaded objects
• Unit of Work to track changed objects for saving

Rob Allen ~ @akrabat

Repositories
• 1-1 relationship between repository and aggregate
• Manage the loading and storing of aggregates
• Often oriented around collections of aggregates

Rob Allen ~ @akrabat

Web services
• The persistence storage could be a web service
• Data mappers work really well

Rob Allen ~ @akrabat

Integrating our model into the
application

Rob Allen ~ @akrabat

The application layer*
It does not contain business rules or knowledge, but only
coordinates tasks and delegates work to collaborations of domain
objects in the next layer down.

Eric Evans

* (Known as service layer in PoEAA)

Rob Allen ~ @akrabat

Application layer
We can sub-divide:

• Application services
• Infrastructural services

Rob Allen ~ @akrabat

Application services
If the banking application can convert and export our transactions
into a spreadsheet file for us to analyze, this is an application
SERVICE.

Eric Evans

Rob Allen ~ @akrabat

Application service
 1 class JourneyCreator {
 2 public function createJourney(Customer $customer, Station $from, Station $to)
 3 {

 4 $journey = $customer->createJourney($from, $to);

 5 $journey->calculateRoute();

 6

 7 $this->notifier->send($journey);

 8 $this->auditor->log("Journey created", $journey);

 9 }

10 }

Rob Allen ~ @akrabat

Beware the Fat service
Decouple using Observer pattern

Rob Allen ~ @akrabat

Infrastructural services
A bank might have an application that sends out an email to a
customer when an account balance falls below a specific
threshold. The interface that encapsulates the email system, and
perhaps alternate means of notification, is a SERVICE in the
infrastructure layer.

Eric Evans

Rob Allen ~ @akrabat

Infrastructural service
• Standard: there's no business or application logic
• Reusable across applications
• Do not write your own - this is what the ecosystem is for

Rob Allen ~ @akrabat

To sum up

Rob Allen ~ @akrabat

To sum up
Ubiquitous Language:

Agreed vocabulary with the business
Bounded Context:

Area of the problem space where the Ubiquitous Language is valid

Rob Allen ~ @akrabat

To sum up
Entity:

Object with identity that do stuff
Value object:

Immutable with no identity
Domain service:

Behaviours that don't belong to an entity

Rob Allen ~ @akrabat

To sum up
Mappers / Repository:

Transfer your model to and from persistence
Application services:

Isolate your domain model from your controllers
Infrastructure services:

Support services for your application

Rob Allen ~ @akrabat

Final point

Rob Allen ~ @akrabat

The success of a design is not necessarily marked by
its longevity. It is the nature of software to change.

Eric Evans

Rob Allen ~ @akrabat

Thank you!

Please rate this talk on EventsXD

Rob Allen ~ @akrabat ~ akrabat.com

	MVC
	MVC
	Domain Driven Design
	Domain
	Is DDD the right choice?
	Ubiquitous Language
	Creating the Ubiquitous Language
	Bounded Contexts & Context Maps
	What's in the model?
	Organising the model
	A problem
	Identify the key objects
	Identify the relationships
	Entity
	Identity
	Value objects
	Entity vs Value Object
	Aggregates
	A station has a location
	A station has a location
	Domain services
	Domain services
	Domain services
	An entity
	A service
	Anaemic domain model
	Entity with behaviour
	Implement as a helper
	Persistence options
	Table Data Gateway
	Table Data Gateway
	Data Mapper
	Data Mapper
	Increased scope: ORM
	ORM
	Repositories
	Web services
	The application layer*
	Application layer
	Application services
	Application service
	Beware the Fat service
	Infrastructural services
	Infrastructural service
	To sum up
	To sum up
	To sum up

