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Let's start with Swift
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What's Swift?
Swift is a general-purpose programming language built using a
modern approach to safety, performance, and software design
patterns.

swift.org
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Open Source
• Created by Apple
• Apache 2 license
• Source code on GitHub
• Swift-evolution: open design of new features
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Cross Platform
• Runs on Linux (x86) and all Apple OSs
• Ports in progress: Android, Linux(ARM), FreeBSD, Windows
• Libraries: Standard library, Foundation, Dispatch & XCTest
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Performance
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Memory
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Major features
Strong typing Custom operators
Type inference Tuples
Optionals Generics
Closures Interoperable with C
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Safety
• Type safety
• Prefer constants over variables
• Variables are always initialized before use
• Optionals: variables can never be nil
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Rock-Paper-Scissors
 1 import Foundation

 2 

 3 let shapes = ["rock", "paper", "scissors"]

 4 

 5 for count in 1...3 {

 6     print(count)

 7     sleep(1)

 8 }

 9 

10 srandom(UInt32(NSDate().timeIntervalSince1970))

11 let chosenShape = random() % shapes.count

12 print(player[chosenShape]);
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Result
$ swift rock-paper-scissors.swift

1

2

3

scissors
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Structs
Swift's value objects
 1 struct Money {

 2     enum Currency { case GBP, EUR, USD }

 3     let money: (Decimal, Currency)

 4 

 5     init (amount: Decimal, currency: Currency) {

 6       money = (amount, currency)

 7     }

 8 

 9     var amount: String {

10       get { return money.0.round(to: 2) }

11     }

12 }
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Structs
Usage:
1 let fivePounds = Money(amount: 5.20, currency: .GBP)

2 print(fivePounds.amount)

 

Compile and run:
$ swift test.swift

5.20
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Classes
Swift's reference objects (& you can inherit!)
1 class Child {

2     var name: String

3     var age: Int

4 

5     init (name: String, age: Int) {

6         self.name = name

7         self.age = age

8     }

9 }
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Reference vs value types
Classes are reference types:
1 var judith = Child(name: "Judith", age: 12)

2 var karen = judith

3 karen.name = "Karen"

4 

5 print(judith.name)

6 print(karen.name)

$ swift test.swift

Karen

Karen
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Reference vs value types
Structs are value types
1 var fivePounds = Money(money: (5.20, .GBP))

2 var tenPounds = fivePounds

3 tenPounds.money = (10.00, .GBP)

4 

5 print(fivePounds.amount)

6 print(tenPounds.amount)

$ swift test.swift

5.20

10.00
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Protocols
• Blueprint of methods & properties, etc that suit a task
• Protocols are adopted by classes & structures
 1 protocol Shareable {

 2   func toJSON() -> String

 3 }

 4 

 5 

 6 extension Money : Shareable {

 7   func toJSON() -> String {

 8     // implement here

 9     return json

10   }

11 }
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Learn the language
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Serverless

Rob Allen ~ @akrabat



Serverless?
 
 

The first thing to know about serverless computing is that
"serverless" is a pretty bad name to call it.

Brandon Butler, Network World
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Serverless
AKA: Functions as a Service

• A runtime to execute your functions
• No capacity planning or load balancing; just tasks being executed.
• Pay for execution, not when idle
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Use-cases
Synchronous Service is invoked and provides immediate

response (HTTP request)
Asynchronous Push a message which drives an action later (web

hooks, timed events)
Streaming Continuous data flow to be processed
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Benefits
• No need to think about servers
• Concentrate on application code
• Pay only for what you use, when you use it
• Language agnostic: NodeJS, Python, Java, Swift, C#, etc
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Challenges
• Start up latency
• Time limit
• State is external
• DevOps is still a thing
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It's about value
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Hello world
(coding time!)
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Let's talk about HTTP APIs
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HTTP APIs
Just because it's serverless doesn't mean we can ignore the basics!

• HTTP method negotiation
• Content-type handling
• Good error handling
• Media type format
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What is Rest?
• An architecture
• Centres on the transfer of representations of resources

• A resource is any concept that can be addressed
• A representation is typically a document that captures the

current or intended state of a resource

• A client makes requests of a server when it wants to transition to a
new state
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Strengths
• Loose coupling
• Leverages the power of HTTP
• Emphasis on readability

• HTTP methods as verbs: GET, POST, PUT, DELETE, etc.
• Resources as nouns: collections and entities
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Constraints
• Client/Server
• Stateless
• Cacheable
• Layered system
• Uniform Interface

Hypermedia as the engine of application state (HATEOAS)
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Richardson Maturity Model

source: http://martinfowler.com/articles/richardsonMaturityModel.html
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Primary aspects of a RESTful API
• URI for each resource: https://api.example.com/users/rob
• HTTP methods are the set of operations allowed for the resource
• Media types are used for representations of the resource
• The API is be hypertext driven
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URI for each resource
• Separate endpoint for each resource
• A resource can be a collection e.g. /users
• or a single entity e.g. /users/rob
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HTTP method negotiation
$ curl -i -X PUT http://example.com/ping

HTTP/1.1 405 Method Not Allowed

Allow: GET

Connection: close

Content-Length: 53

Content-type: application/json

{

    "message": "Method not allowed. Must be one of: GET"

}
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Status codes
Send the right one for the right situation!

1xx Informational
2xx Success
3xx Redirection
4xx Client error
5xx Server error
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HTTP verbs
Method Used for Idempotent?
GET Retrieve data Yes
PUT Change data Yes
DELETE Delete data Yes
POST Change data No
PATCH Update data No
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Content negotiation
Correctly parse the request

• Read the Content-Type header
• Raise "415 Unsupported media type" status if unsupported

Correctly create the response

• Read the Accept header
• Set the Content-Type header
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Hypermedia controls
a.k.a: Links between resources.

• Media type used for a representation
• The link relations between representations and/or states
• Important for discoverability
• Options: HAL, Collection+JSON, JSON-LD
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application/hal+json
https://tools.ietf.org/html/draft-kelly-json-hal
{

  "_links": {

    "self": { "href": "https://example.com/orders/523" },

    "warehouse": { "href": "https://example.com/warehouse/56" },

    "invoice": { "href": "https://example.com/invoices/873" }

  },

  "currency": "GBP",

  "status": "shipped",

  "total": 123.45

}
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Let's look at APIs
(coding time!)
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Summary

Rob Allen ~ @akrabat



Resources
This talk:

• https://github.com/SwiftOnTheServer/flashcards
• https://akrabat.com/talks/#sais

Around the web:

• https://swift.org
• https://openwhisk.org
• https://medium.com/openwhisk
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Questions?
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Thank you!
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