
Serverless APIs in Swift
Rob Allen

April 2017 ~ @akrabat

Let's start with Swift

Rob Allen ~ @akrabat

What's Swift?
Swift is a general-purpose programming language built using a
modern approach to safety, performance, and software design
patterns.

swift.org

Rob Allen ~ @akrabat

Open Source
• Created by Apple
• Apache 2 license
• Source code on GitHub
• Swift-evolution: open design of new features

Rob Allen ~ @akrabat

Cross Platform
• Runs on Linux (x86) and all Apple OSs
• Ports in progress: Android, Linux(ARM), FreeBSD, Windows
• Libraries: Standard library, Foundation, Dispatch & XCTest

Rob Allen ~ @akrabat

Performance

Rob Allen ~ @akrabat

Memory

Rob Allen ~ @akrabat

Major features
Strong typing Custom operators
Type inference Tuples
Optionals Generics
Closures Interoperable with C

Rob Allen ~ @akrabat

Safety
• Type safety
• Prefer constants over variables
• Variables are always initialized before use
• Optionals: variables can never be nil

Rob Allen ~ @akrabat

Rock-Paper-Scissors
 1 import Foundation

 2

 3 let shapes = ["rock", "paper", "scissors"]

 4

 5 for count in 1...3 {

 6 print(count)

 7 sleep(1)

 8 }

 9

10 srandom(UInt32(NSDate().timeIntervalSince1970))

11 let chosenShape = random() % shapes.count

12 print(player[chosenShape]);

Rob Allen ~ @akrabat

Result
$ swift rock-paper-scissors.swift

1

2

3

scissors

Rob Allen ~ @akrabat

Structs
Swift's value objects
 1 struct Money {

 2 enum Currency { case GBP, EUR, USD }

 3 let money: (Decimal, Currency)

 4

 5 init (amount: Decimal, currency: Currency) {

 6 money = (amount, currency)

 7 }

 8

 9 var amount: String {

10 get { return money.0.round(to: 2) }

11 }

12 }

Rob Allen ~ @akrabat

Structs
Usage:
1 let fivePounds = Money(amount: 5.20, currency: .GBP)

2 print(fivePounds.amount)

Compile and run:
$ swift test.swift

5.20

Rob Allen ~ @akrabat

Classes
Swift's reference objects (& you can inherit!)
1 class Child {

2 var name: String

3 var age: Int

4

5 init (name: String, age: Int) {

6 self.name = name

7 self.age = age

8 }

9 }

Rob Allen ~ @akrabat

Reference vs value types
Classes are reference types:
1 var judith = Child(name: "Judith", age: 12)

2 var karen = judith

3 karen.name = "Karen"

4

5 print(judith.name)

6 print(karen.name)

$ swift test.swift

Karen

Karen

Rob Allen ~ @akrabat

Reference vs value types
Structs are value types
1 var fivePounds = Money(money: (5.20, .GBP))

2 var tenPounds = fivePounds

3 tenPounds.money = (10.00, .GBP)

4

5 print(fivePounds.amount)

6 print(tenPounds.amount)

$ swift test.swift

5.20

10.00

Rob Allen ~ @akrabat

Protocols
• Blueprint of methods & properties, etc that suit a task
• Protocols are adopted by classes & structures
 1 protocol Shareable {

 2 func toJSON() -> String

 3 }

 4

 5

 6 extension Money : Shareable {

 7 func toJSON() -> String {

 8 // implement here

 9 return json

10 }

11 }

Rob Allen ~ @akrabat

Learn the language

Rob Allen ~ @akrabat

Serverless

Rob Allen ~ @akrabat

Serverless?

The first thing to know about serverless computing is that
"serverless" is a pretty bad name to call it.

Brandon Butler, Network World

Rob Allen ~ @akrabat

Serverless
AKA: Functions as a Service

• A runtime to execute your functions
• No capacity planning or load balancing; just tasks being executed.
• Pay for execution, not when idle

Rob Allen ~ @akrabat

Use-cases
Synchronous Service is invoked and provides immediate

response (HTTP request)
Asynchronous Push a message which drives an action later (web

hooks, timed events)
Streaming Continuous data flow to be processed

Rob Allen ~ @akrabat

Benefits
• No need to think about servers
• Concentrate on application code
• Pay only for what you use, when you use it
• Language agnostic: NodeJS, Python, Java, Swift, C#, etc

Rob Allen ~ @akrabat

Challenges
• Start up latency
• Time limit
• State is external
• DevOps is still a thing

Rob Allen ~ @akrabat

It's about value

Rob Allen ~ @akrabat

Hello world
(coding time!)

Rob Allen ~ @akrabat

Let's talk about HTTP APIs

Rob Allen ~ @akrabat

HTTP APIs
Just because it's serverless doesn't mean we can ignore the basics!

• HTTP method negotiation
• Content-type handling
• Good error handling
• Media type format

Rob Allen ~ @akrabat

What is Rest?
• An architecture
• Centres on the transfer of representations of resources

• A resource is any concept that can be addressed
• A representation is typically a document that captures the

current or intended state of a resource

• A client makes requests of a server when it wants to transition to a
new state

Rob Allen ~ @akrabat

Strengths
• Loose coupling
• Leverages the power of HTTP
• Emphasis on readability

• HTTP methods as verbs: GET, POST, PUT, DELETE, etc.
• Resources as nouns: collections and entities

Rob Allen ~ @akrabat

Constraints
• Client/Server
• Stateless
• Cacheable
• Layered system
• Uniform Interface

Hypermedia as the engine of application state (HATEOAS)

Rob Allen ~ @akrabat

Richardson Maturity Model

source: http://martinfowler.com/articles/richardsonMaturityModel.html

Rob Allen ~ @akrabat

http://martinfowler.com/articles/richardsonMaturityModel.html

Primary aspects of a RESTful API
• URI for each resource: https://api.example.com/users/rob
• HTTP methods are the set of operations allowed for the resource
• Media types are used for representations of the resource
• The API is be hypertext driven

Rob Allen ~ @akrabat

URI for each resource
• Separate endpoint for each resource
• A resource can be a collection e.g. /users
• or a single entity e.g. /users/rob

Rob Allen ~ @akrabat

HTTP method negotiation
$ curl -i -X PUT http://example.com/ping

HTTP/1.1 405 Method Not Allowed

Allow: GET

Connection: close

Content-Length: 53

Content-type: application/json

{

 "message": "Method not allowed. Must be one of: GET"

}

Rob Allen ~ @akrabat

Status codes
Send the right one for the right situation!

1xx Informational
2xx Success
3xx Redirection
4xx Client error
5xx Server error

Rob Allen ~ @akrabat

HTTP verbs
Method Used for Idempotent?
GET Retrieve data Yes
PUT Change data Yes
DELETE Delete data Yes
POST Change data No
PATCH Update data No

Rob Allen ~ @akrabat

Content negotiation
Correctly parse the request

• Read the Content-Type header
• Raise "415 Unsupported media type" status if unsupported

Correctly create the response

• Read the Accept header
• Set the Content-Type header

Rob Allen ~ @akrabat

Hypermedia controls
a.k.a: Links between resources.

• Media type used for a representation
• The link relations between representations and/or states
• Important for discoverability
• Options: HAL, Collection+JSON, JSON-LD

Rob Allen ~ @akrabat

application/hal+json
https://tools.ietf.org/html/draft-kelly-json-hal
{

 "_links": {

 "self": { "href": "https://example.com/orders/523" },

 "warehouse": { "href": "https://example.com/warehouse/56" },

 "invoice": { "href": "https://example.com/invoices/873" }

 },

 "currency": "GBP",

 "status": "shipped",

 "total": 123.45

}

Rob Allen ~ @akrabat

https://tools.ietf.org/html/draft-kelly-json-hal

Let's look at APIs
(coding time!)

Rob Allen ~ @akrabat

Summary

Rob Allen ~ @akrabat

Resources
This talk:

• https://github.com/SwiftOnTheServer/flashcards
• https://akrabat.com/talks/#sais

Around the web:

• https://swift.org
• https://openwhisk.org
• https://medium.com/openwhisk

Rob Allen ~ @akrabat

https://github.com/SwiftOnTheServer/flashcards
https://akrabat.com/talks/#sais
https://swift.org
https://openwhisk.org
https://medium.com/openwhisk

Questions?

Rob Allen ~ @akrabat

Thank you!

Rob Allen ~ @akrabat

	What's Swift?
	Open Source
	Cross Platform
	Performance
	Memory
	Major features
	Safety
	Rock-Paper-Scissors
	Result
	Structs
	Structs
	Classes
	Reference vs value types
	Reference vs value types
	Protocols
	Learn the language
	Serverless?
	Serverless
	Use-cases
	Benefits
	Challenges
	It's about value
	HTTP APIs
	What is Rest?
	Strengths
	Constraints
	Richardson Maturity Model
	Primary aspects of a RESTful API
	URI for each resource
	HTTP method negotiation
	Status codes
	HTTP verbs
	Content negotiation
	Hypermedia controls
	application/hal+json
	Resources

