
The Right API for the Job
Rob Allen

PHPDay, May 2022

As much an API integrator as an API developer, so going to look at what makes a good API from both points of view.

Client developers judge your API on how they can use it and more importantly, on the struggles they have using it

Fit for Purpose

Rob Allen ~ @akrabat

Another way of saying 'The Right API For the Job' is 'Fit for Purpose'

If there's one phrase that sums up a good architectures, it's Fit For Purpose.

Fundamentally, the API has to do its job and achieve it's business requirements.

We're interested what that takes in terms of our choice of architecture and developer experience.

API Architecture

Rob Allen ~ @akrabat

We can break API architecture into three: GraphQL, RESTful & RPC style

All have pros and cons and which one you pick depends on what balance of features and requirements

works best for your situation

We'll look at each in three, how they work and then look at the pros and cons

APIs can be realised in any style
but, which makes the most sense?

Rob Allen ~ @akrabat

The short answer is It depends!

Which properties are the ones you care about, so let's dive in

RPC APIs

Rob Allen ~ @akrabat

RPC APIs
• Call a function on a remote server

Rob Allen ~ @akrabat

RPC APIs
• Call a function on a remote server

• Common implementations: JSON-RPC, SOAP, gRPC

Rob Allen ~ @akrabat

RPC APIs
• Call a function on a remote server

• Common implementations: JSON-RPC, SOAP, gRPC

• Tends to require a schema (WSDL, ProtoBuf Defintion)

Rob Allen ~ @akrabat

Ethereum JSON-RPC
Request:
 POST / HTTP/1.1
 Host: localhost:8545

 {
 "jsonrpc":"2.0",
 "id":1,
 "method":"net_peerCount",
 "params":[]
 }

Rob Allen ~ @akrabat

Ethereum JSON-RPC
Response:
 {
 "id":1,
 "jsonrpc": "2.0",
 "result": "0x2"
 }

Rob Allen ~ @akrabat

gRPC
Interact via PHP library:

$client = new RouteGuideClient('localhost:50051');

$p = new Routeguide\Point();
$p->setLatitude(409146138);
$p->setLongitude(-746188906);
list($feature, $status) = $client->GetFeature($p)->wait();

Rob Allen ~ @akrabat

gRPC is highly typed

gRPC is good for:

Efficient comunnication is most important (binary protocol, duplex streaming)

APIs are internal (don't force this tech on anyone else!)

gRPC bad for: no browser support, no url end points

Note that status is error condition

RESTful APIs

Rob Allen ~ @akrabat

RESTful APIs
• Operate on a representation of the state of a resource though

HTTP verbs

Rob Allen ~ @akrabat

GET, POST, DELETE, PUT, PATCH

RESTful APIs
• Operate on a representation of the state of a resource though

HTTP verbs

• HTTP native

Rob Allen ~ @akrabat

HTTP verbs for operations, Headers control content formats

Status codes have meaning, Layered system

HTTP caching is implicit

RESTful APIs
• Operate on a representation of the state of a resource though

HTTP verbs

• HTTP native

• Uniform interface

Rob Allen ~ @akrabat

Predictable endpoints

Predictable operations

RESTful APIs
• Operate on a representation of the state of a resource though

HTTP verbs

• HTTP native

• Uniform interface

• Hypermedia controls

Rob Allen ~ @akrabat

Links for state transitions (what to do next)

Links for related resources

(Great for discoverability)

RESTful APIs
PUT /users/ba60c99fd3b64a4ea218b2b17a4c6704
Content-Type: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen ~ @akrabat

RESTful APIs
PUT /users/ba60c99fd3b64a4ea218b2b17a4c6704
Content-Type: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen ~ @akrabat

RESTful APIs
PUT /users/ba60c99fd3b64a4ea218b2b17a4c6704
Content-Type: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen ~ @akrabat

RESTful APIs
HTTP/1.1 201 Created
ETag: "dfb9f2ab35fe4d17bde2fb2b1cee88c1"
Content-Type: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen ~ @akrabat

RESTful APIs
HTTP/1.1 201 Created
ETag: "dfb9f2ab35fe4d17bde2fb2b1cee88c1"
Content-Type: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen ~ @akrabat

RESTful APIs
HTTP/1.1 201 Created
ETag: "dfb9f2ab35fe4d17bde2fb2b1cee88c1"
Content-Type: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen ~ @akrabat

RESTful APIs
HTTP/1.1 201 Created
ETag: "dfb9f2ab35fe4d17bde2fb2b1cee88c1"
Content-Type: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen ~ @akrabat

Body is a convenience

The HTTP standard is about describing what is going on using the semantics that are common to all resources and components

GraphQL APIs

Rob Allen ~ @akrabat

GraphQL APIs
• Retrieve only the data you need on consumer side

Rob Allen ~ @akrabat

GraphQL APIs
• Retrieve only the data you need on consumer side

• Reduce the number of calls to retrieve data with embedded
resources

Rob Allen ~ @akrabat

GraphQL APIs
• Retrieve only the data you need on consumer side

• Reduce the number of calls to retrieve data with embedded
resources

• Self-describing schema

Rob Allen ~ @akrabat

GraphQL comes with a full ecosystem which ease both API provider and consumer job.

Queries
query {
 author(name: "Ann McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title, datePublished
 }
 }
 }
 }
}

Rob Allen ~ @akrabat

Reading and writing actions are separated in 2 sets: queries & mutations

Knowing how one works, doesn't mean you know how the other works.

You can query the schema for read

You have to read the docs to find out mutation function names

Queries
query {
 author(name: "Ann McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title, datePublished
 }
 }
 }
 }
}

Rob Allen ~ @akrabat

Queries
query {
 author(name: "Ann McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title, datePublished
 }
 }
 }
 }
}

Rob Allen ~ @akrabat

Queries
query {
 author(name: "Ann McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title, datePublished
 }
 }
 }
 }
}

Rob Allen ~ @akrabat

Queries
query {
 author(name: "Ann McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title, datePublished
 }
 }
 }
 }
}

Rob Allen ~ @akrabat

Queries
query {
 author(name: "Ann McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title, datePublished
 }
 }
 }
 }
}

Rob Allen ~ @akrabat

Queries
query {
 author(name: "Ann McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title, datePublished
 }
 }
 }
 }
}

Rob Allen ~ @akrabat

Queries
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Ann McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen ~ @akrabat

Queries
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Ann McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen ~ @akrabat

Queries
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Ann McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen ~ @akrabat

Queries
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Ann McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen ~ @akrabat

The list of edges continues

Mutations
mutation {
 createAuthor(
 name:"Mary Shelley", dateOfBirth: "1797-08-30"
) {
 returning {
 id, name
 }
 }
}

Rob Allen ~ @akrabat

Mutations
Response:
"data": {
 "createAuthor": {
 "returning": [
 {
 "id": "e3388cbea4e840a",
 "name": "Mary Shelly",
 }
]
 }
}

Rob Allen ~ @akrabat

Note that you need to look up docs for the name of the mutation

Which to pick?

Rob Allen ~ @akrabat

Lamborghini or Ferrari?
Rob Allen ~ @akrabat

Lamborghini or Ferrari? This is a preference

Totally valid to create the one you prefer to write! It will be better

No one looks forward to writing a SOAP API!

Lamborghini or Truck?
Rob Allen ~ @akrabat

Lamborghini or Pickup Truck?

This depends on what you are optimising for

There are some important differences that may matter to you.

Let's look at them

Considerations
• What is it to be used for?

• Response customisation requirements

• HTTP interoperability requirements

• Binary protocol?

Rob Allen ~ @akrabat

Response customisation
• GraphQL is a query-first language

• REST tends towards less customisation

• With RPC you get what you're given!

(None will fix your database layer's ability to efficiently retreive the data requested!)

Rob Allen ~ @akrabat

GraphQL: Choose your fields & nested-resources

REST: HATEOAS prefers separate endpoints for sub-resources (through HTTP/2!)

REST: usea DSL such as JSON-API for customisation

HTTP/2 can send multiple requests for data in parallel over one TCP connection

RPC: You're calling a function!

Performance
• REST and RPC puts server performance first

• GraphQL puts client performance first

Rob Allen ~ @akrabat

REST tenent of Client-server autonomy means that client doesn't know business logic

GraphQL encourages client business logic

Caching
• GraphQL and RPC can only cache at application layer

• REST can additionally cache at HTTP layer

Rob Allen ~ @akrabat

Data Transfer
GraphQL: RPC:

 query {
 avatar(userId: "1234")
 }

 {
 "data": {
 "avatar": "(base64 data)"
 "format": "image/jpeg"
 }
 }}

 POST /api
 {
 "method": "getAvatar",
 "userId": "1234"
 }

 {
 "result": "(base64 data)"
 }

Rob Allen ~ @akrabat

Data Transfer
REST: REST:

 GET /user/1234/avatar
 Accept: image/jpeg

 HTTP/1.1 200 OK
 {jpg image data}

 GET /user/1234/avatar
 Accept: application/jpeg

 HTTP/1.1 200 OK
 {"data": "(base64 data)"}

Rob Allen ~ @akrabat

GraphQL & RPC can send field data backwards and forwards

Only REST can also send and receive other types of data

Versioning
• RPC, GraphQL and REST can all version via evolution as easily

as each other

Rob Allen ~ @akrabat

Don't let anyone tell you graphql doesn't need versions! Shopify ended up using versions.

Design of a schema that doesn't break BC in the future is very very hard though!

In all types of APIs

Versioning
• RPC, GraphQL and REST can all version via evolution as easily

as each other

• GraphQL is very good for deprecation of specific fields

Rob Allen ~ @akrabat

You can monitor if anyone is using it and reach out directly.

Design considerations

It's always hard!

Rob Allen ~ @akrabat

GraphQL: need to control naming and also choose what can be nested.

Need to balance UX of API vs internal app capabilities

Easy to accidentally allow a query to DOS you

Design considerations

It's always hard!

Rob Allen ~ @akrabat

REST: need to balance data sent vs number of requests

Easy to end up with clients needing to make too many calls

REST Uniform inerface encourages consistency and easier learning curve

It's your choice

Rob Allen ~ @akrabat

in REST, the structure of the request object is defined on the server. In GraphQL, you define the object on the client.

A big part of the purpose of GraphQL is to eliminate the multiple round-trips. If that's not a pain point for you, maybe it's not necessary.

GraphQL vs REST is like comparing SQL with noSQL

I like them both & would be happy with a well designed one over a hard-to-use other

So, let's talk about that

Developer Experience

Rob Allen ~ @akrabat

No matter which API style you pick, if the DX is bad, then the API is not fit fo purpose

Correctness

Rob Allen ~ @akrabat

Correctness
RPC: Functions!

Rob Allen ~ @akrabat

An RPC API is a remote function call. Make it work like that

Correctness
RPC: Functions!
REST: HTTP matters!

Rob Allen ~ @akrabat

Uniform interface design of URIs

Correct use of HTTP verbs

Status codes matter

Correct use of media types: Content-Type, Accept allows forward evolution

Use Hypermedia for exploration API & decoupling client from server

Use caching headers

Correctness
RPC: Functions!
REST: HTTP matters!
GraphQL: Think in terms of relationships!

Rob Allen ~ @akrabat

Think in Graphs!

Define your schema in terms of nodes and relationships

Define types correctly

Use conventions for naming fields and filters

Think about how far to allow nesting

Use Relay project specification for pagination & Global Object identification

Correctness
RPC: Functions!
REST: HTTP matters!
GraphQL: Think in terms of relationships!

Rob Allen ~ @akrabat

IN ALL CASES:

Naming things is hard - be consistent

Take time to design relationships

Take time to get collections vs scalars right as harder to change later

Errors

Rob Allen ~ @akrabat

Errors
Error representations must be first class citizens

Rob Allen ~ @akrabat

REST: Use 4xx and 5xx status codes

REST: RFC 7807 for format

Errors
Error representations must be first class citizens

Rob Allen ~ @akrabat

GraphQL: Beware of cryptic messages from server software

GraphQL: Top-level 'errors' for exceptional scenarios - service down, syntax errors, rate limited, etc

GraphQL: Domain errors within schema

 error fields defined in schema so more learning required by dev

 adhoc fields become unweidy, so use error types per node

Documentation

Rob Allen ~ @akrabat

Finally, I want to touch on documentation as this will make or break adoption

Documentation
• API Reference

Rob Allen ~ @akrabat

GraphQL API comes with an integrated documentation system describing the schema. You can discover the available queries and the data returned.

A RESTful API comes with an OpenAPI specification. You can discover the available endpoints, operations and the data returned.

Documentation
• API Reference

• Tutorials

Rob Allen ~ @akrabat

You still need tutorials though. A reference is the what

It is not the how or the why

To sum up

Rob Allen ~ @akrabat

If you suck at providing a REST API,
you will suck at providing a GraphQL API

Arnaud Lauret, API Handyman

Rob Allen ~ @akrabat

The API style doesn't really matter. What matters is your design

Your second attempt will be better than your first

GraphQL designs tend to build in the lessons from the last RESTful API

Thank you!
https://joind.in/talk/8cdd9

Rob Allen ~ @akrabat

https://joind.in/talk/8cdd9

Photo credits
- Architecture: https://www.flickr.com/photos/shawnstilwell/4335732627
- Choose Pill: https://www.flickr.com/photos/eclib/4905907267
- Lamborghini & Ferrari: https://akrab.at/3w0yFmg
- Lamborghini & Truck: https://akrab.at/3F4kAZk
- '50s Computer: https://www.flickr.com/photos/9479603@N02/49755349401
- Blackboard: https://www.flickr.com/photos/bryanalexander/17182506391
- Crash Test: https://www.flickr.com/photos/astrablog/4133302216

Rob Allen ~ @akrabat

https://www.flickr.com/photos/shawnstilwell/4335732627
https://www.flickr.com/photos/eclib/4905907267
https://akrab.at/3w0yFmg
https://akrab.at/3F4kAZk
https://www.flickr.com/photos/9479603@N02/49755349401
https://www.flickr.com/photos/bryanalexander/17182506391
https://www.flickr.com/photos/astrablog/4133302216

	RPC APIs
	RPC APIs
	RPC APIs
	Ethereum JSON-RPC
	Ethereum JSON-RPC
	gRPC
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs
	GraphQL APIs
	GraphQL APIs
	GraphQL APIs
	Queries
	Queries
	Queries
	Queries
	Queries
	Queries
	Queries
	Queries
	Queries
	Queries
	Queries
	Mutations
	Mutations
	Considerations
	Response customisation
	Performance
	Caching
	Data Transfer
	Data Transfer
	Versioning
	Versioning
	Design considerations
	Design considerations
	Correctness
	Correctness
	Correctness
	Correctness
	Errors
	Errors
	Documentation
	Documentation
	Photo credits

