
An introduction to

Domain Driven Design

Rob Allen, January 2024

Let's talk about one way to design software that I feel works really well.

It started with a book

Rob Allen | @rob@social.akrabat.com

This book by Eric Evans came out in mid-2003, nearly 21 years ago and unusually for a tech book, is still relevant today.

Not many tech books last, this one does.

The key is in the sub-head.

Rob Allen | @rob@social.akrabat.com

We can't just sit down and type code to create an application. Well, we can do that, and it works well for trivial cases . But we cannot create complex software like that.

In order to create good software, you have to know what that software is all about.

You cannot create a insurance software system unless you have a good understanding of what insurance is all about, one must understand the domain of insurance.

This is what I'm interested in and want to talk to you about. Software is complex because domain complexity (the problem we're solving for the business) mixes with technical complexity (How to do it)

There's always this complexity. We need to handle it or it will handle us. Domain-Driven Design is an approach to help with this

DDD provides for the

Strategic and Tactical

Rob Allen | @rob@social.akrabat.com

Domain-Driven Design is a large topic that we can break down into two parts.

Strategic Design - big picture - we address the strategy behind the direction of the business.

Tactical Design - the nitty gritty of the details using domain modelling patterns

Let's start with Strategic design

Domains & Models

Rob Allen | @rob@social.akrabat.com

* We solve complex problems by using models

 * A domain model represents a view or the problem domain. - could use the word 'space' instead of domain

 * Note: not the reality of the problem space, just enough of a view to meed the business use-cases (problems) that we need in our software.

* Expressions of the model

 * Code, diagram, docs

 * all use the same language

Business use-case (Problem): A passenger needs to navigate the London Underground

Domain: The London Underground railway network

Model: The Tube Map by Harry Beck in 1931

Note map has little relationship between real distances between stations, so would be a useless model for the railway's civil engineers

A Domain is

something in the real-world

Rob Allen | @rob@social.akrabat.com

The domain is usually a set of processes involving people to achieve a goal

A Domain is

the subject of our project

Rob Allen | @rob@social.akrabat.com

We might call this the problem space

A Domain is

understood by experts in the space

Rob Allen | @rob@social.akrabat.com

rarely consistently explained between experts!

A Domain Model is

a representation of the Domain

Rob Allen | @rob@social.akrabat.com

The domain model communicates the domain between domain experts and developers

A Domain Model is

an abstraction of reality

Rob Allen | @rob@social.akrabat.com

The domain model is essential part of software design, we need it to deal with the complexity

Not the full picture. It leaves out unnecessary information

is organised, to divide it up and make it comprehensible

A Domain Model is

expressed as diagrams, words, code

Rob Allen | @rob@social.akrabat.com

a domain model is not a particular diagram; it is the idea that the diagram is intended to convey. It is not just the knowledge in a domain expert's head; it is a rigorously organized and selective abstraction of that knowledge. A diagram can represent and communicate a model, as can carefully written code, as can an English sentence or a set of post-it notes.

Building domain knowledge

Rob Allen | @rob@social.akrabat.com

"We have really everything in common
with America nowadays except, of
course, language"

Oscar Wilde

Rob Allen | @rob@social.akrabat.com

This could be said of our domain experts and our developers - two nations divided by a common language. Really common to see developers and business people using the same words to mean different things.

Developers leak technical terms and business people leak jargon

Which brings us to...

It's clear from the example that making the right software design is easier if the software specialists talk to the domain experts

However, there's difficulties due to a communication barrier

* See Lightning talk

* Don't focus on technical details, talk in domain terms

* UL minimises the cost of translation and binds the code to the language of the domain

* Obsess over it - make everyone use our shared language

 * Remove business terms that aren't useful to solving our use-cases - even if they exist in reality

 * Remove technical terms that distract from the domain complexity that aren't used by the domain experts

 * e.g. database is good, message queue mechanics less useful.

* Create a business glossary

 * Ensure that it's linked to from the README for the developers and the main project home for the SMEs

 * Doesn't matter where it's stored - One client uses a WordPress site. Another has an actually successful Confluence instance!

Ubiquitous Language

Rob Allen | @rob@social.akrabat.com

I want to talk a little this evening about what I consider to be the hardest part of DDD. Ubiquitous Language.

As Wilde noted, language is hard. When we speak, we think that we are clear in what we are saying, but this isn't always true. Similarly, we're not very good at listening and don't pick up the nuance in what someone else says as we're too busy thinking about what we're going to say next.

In a conversation, we can end up talking at cross purposes because we have misunderstood the other person.

Ubiquitous Language is

The agreed concepts, meanings and
terms for the project

Rob Allen | @rob@social.akrabat.com

With Ubiquitous Language, we build:

* A common language or vocabulary between the developers and the business

* That is limited to the domain problem

* It describes how business itself thinks and operates

* We can ensure that the team are all on the same page

You have to talk!

Rob Allen | @rob@social.akrabat.com

How do we create a Ubiquitous Language for our team and project?

Explore how the business operates

* Identify the business processes

* Find the inputs and outputs

* Document it all!(pictures, use-cases, glossary, workflow-diagrams, etc.)

Ubiquitous Language is

Foundational to implementing
Domain Driven Design

Rob Allen | @rob@social.akrabat.com

It's the right at the front of the DDD book by Eric Evans

DDD is all about modelling the Domain. We can't have a model if we can't describe it.

As Evans puts it: 'A project faces serious problems when its language is fractured'

The cost of misunderstanding is very high. Not only frustration, but lost time and real money

Talk about Bounded Contexts here

In Domain-Driven Design

Everything revolves around
Ubiquitous Language

Rob Allen | @rob@social.akrabat.com

Throughout the project's life, from initial design, through build, QA, launch and ongoing revenue, always use the right language.

Use the terms of the Ubiquitous Language in the codebase, in the docs, in reports

Language changes over time, so terms that seemed right at the start will change as we understand more. When this happens, refactor the codebase to use the new term. Seems like work, but a year later, that mismatch will hurt the project.

Observations about
creating a domain model

Rob Allen | @rob@social.akrabat.com

It is rare that the first idea of the model is the best one. Try different ideas to see which is best||A model is not static. It evolves with new business cases and new understanding

YAGNI applies! Don't model real life - only model what's needed for the business use-cases

Focus effort
where it matters

Rob Allen | @rob@social.akrabat.com

Not all of the system will be well designed as it often isn't cost effective to strive for this.

Identify the core domain and core complexity to focus on

Core domain is why you are writing the software in the first place.

As DDD is expensive and time consuming, use it where it matters

Use simpler design/off-the-shelf elsewhere - e.g. you might use Laravel Sanctum for your SPA

Knowledge Crunching

Rob Allen | @rob@social.akrabat.com

Distil relevant information from the problem domain. Collaborate with business people (domain experts)!

Note that they are busy people and can see it as unproductive - their bonus usually doesn't depend on this!

Gain knowledge using whiteboards, talking in the kitchen, brain storming, prototyping, etc.

Use-case diagrams work work to help developers understand the problem domain

Do not need formal notation - just arrows, words and maybe circles around the words

 * e.g. with tube map, the stakeholders are probably the marketing dept and the sales dept. Not necessarily the engineers who know which stations connect which which lines

Knowledge Crunching

Event Storming

Rob Allen | @rob@social.akrabat.com

Workshop with post-it notes on the walls. Different post-it notes for events. This is a group modelling technique.

Big Picture, explores lots of stories within the system, invented by Alberto Brandolini in 2012

By Henning Schwentner - CC BY-SA 4.0

Designed to be fun, efficient & straightforward

Process: Find all domain events (orange notes). For each one, find the command that caused the event (blue), then find actors (yellow), business processes (purple), views (green).

Interactive discussions, everyone participates, adds post-its and moves them as we learn

As I said big picture

Knowledge Crunching

User Story Mapping

Rob Allen | @rob@social.akrabat.com

Diving deeper into each event, we can look at the process from the user's point of view. We take user stories and map them in two dimensions

This is a way to visualise the user journeys

It helps teams to understand their product's functionality and the relationship between different functionalities from the user's point of view. Builds a clearer shared vision about the product and its purpose.

When writing user stories, ensure that you use the language of the business

By Dai Fujihara - CC BY-SA 2.0

Horizontal axis is user activities - the main tasks/goals that users want to use the product for as a narrative flow (this, then that, then the other).

Under each user activity, we have the steps belonging to it (aka tasks) then draw a line and write the user stories for the tasks, arranged vertically in terms of priority

blue lines down the map represent measurable outcomes for the users - aka releases (MVP, 1.0, 1.1, etc)

It helps teams to understand their product's functionality and the relationship between different functionalities from the user's point of view. Builds a clearer shared vision about the product and its purpose.

Knowledge Crunching

Event Modelling

Rob Allen | @rob@social.akrabat.com

Deeper dive into certain stories - creating a blueprint for a solution

Describing systems using examples of how information changes within them over time

eventmodelling.org

I couldn't find a more human picture, but this can also be done in workshop environments.

We build a detailed picture of the events of a system over time and how they affect state

Time is the key concept as it looks at lifecycles. Exposes more understanding of the system as a result.

We tend to use it at detailed design stage of the software used in conjunction with wireframes and data models

We identify how a user can change the state of a system (a trigger) and from that identify outputs (view) and the state that changes leaving to determining events and commands

Trigger, Command, Event, View

Managing Domain
Complexity

Rob Allen | @rob@social.akrabat.com

Over time models lose integrity and explicitness due to growth in complexity, multiple teams working on it, language becoming ambiguous.

We solve this by dividing into 'bounded contexts'

* Compose bounded contexts to create Applications

* Each bounded context is:

 * Authoritative within its space - e.g. owns its UI - or delegates to other bounded context for UI matters,

 * Autonomous

A Bounded Context is not a Module. A Bounded Context provides the logical frame inside of which the model evolves. Modules are used to organize the elements of a model, so Bounded Context encompasses the Module.

Bounded Contexts

define the boundary for a model

Rob Allen | @rob@social.akrabat.com

A Bounded Context defines the boundary within which a particular model is defined and applicable. Each part of the model is understood in a specific context

'The word good has many meanings. For example, if a man were to shoot his grandmother at a range of five hundred yards, I should call him a good shot, but not necessarily a good man.' (G.K. Chesterton, Orthodoxy, 1909)

Bounded Contexts

protect the domain model from
dilution

Rob Allen | @rob@social.akrabat.com

We don't want leakage of meaning or operations between different contexts

However, we can use specific terminology within each bounded context, eg. Customer becomes lead in sales context, passenger in booking context, subscriber in marketing context

If this is not done, then the software risks becoming a Big Ball of Mud

* The Service Layer is the concrete implementation of the bounded context boundary

* The job of these services is to expose business use-cases and delegate them to the model to fulfil them

Bounded Contexts

are composed into an application

Rob Allen | @rob@social.akrabat.com

Compose bounded contexts to create Applications

Each bounded context is:

 Autonomous

 Authoritative within its space - e.g. owns its UI - or delegates to other bounded context for UI matters,

A Bounded Context is not a Module. It provides the logical frame inside of which the model evolves. Modules are used to organize the elements of a model, so Bounded Context encompasses the Module.

Context maps

Rob Allen | @rob@social.akrabat.com

Which leads us to how we document this. The easiest way is a context map which is jargon for a picture

* Use a Context Map to show all models within their bounded contexts

 * This is just a high-level document - diagram - could easily be hand drawn

 * Communicates holistic picture of the contexts in play

 * Simple enough to be understood by everyone: domain experts and developers

 * For legacy systems being improved, it should also show areas of the system not understood

 * i.e. where the big balls of mud are

Tactical design

Rob Allen | @rob@social.akrabat.com

Tactical DDD is a set of design patterns and building blocks that you can use to design domain-driven systems. It's is much more hands-on and closer to the actual code than strategic domain-driven design

Strategic design deals with abstract wholes, whereas tactical design deals with classes and modules.

DDD is technically agnostic, implementation is flexible and open to innovation.

The Blue Book is not a bible any more than Fowler's Patterns of Enterprise Application Architecture

With that said, let's look at some common principles and patterns you see used in DDD implementations

Tactical Design

Entities, Value Objects &
Aggregates

Rob Allen | @rob@social.akrabat.com

Value Objects are identified by their attributes and are immutable. Commonly used to express some quantity, measure or descriptor.

Entities are identified by their identity and are not interchangeable. They tend to be mutable and change state over their lifecycle and can contain rules that encapsulate behaviour essential to the concept that they represent. (e.g. claim amount cannot be bigger than insured amount)

Aggregates are just a cluster of related objects that operate together and are treated as a unit. e.g an order with its line items

Tactical Design

Storing State

Rob Allen | @rob@social.akrabat.com

We need to store state in applications. Usually to a database or an API. Traditionally, DDD we use repositories for this to separate from the domain model.

Practically, this can be difficult in some frameworks which use Active Record as their ORM. Personally, I wouldn't worry about it and go with the framework's view of the world, accepting this limitation.

Tactical Design

Services

Rob Allen | @rob@social.akrabat.com

These are processes that don't belong to a specific entity or value object. They represent activities in the system and generally operate on multiple entities.

They are stateless, identity-less as a result

We classify into Domain Services (business operations), Application Sercices (facade between the app and the domain) and Infrastructure Services are reusable across applciations (emails, logging, etc)

Realising when to use a service instead of putting the logic in an entity or a value object is a significant aspect of designing a good domain model.

which leads us to Architecture.

Tactical Design

Architecture

Rob Allen | @rob@social.akrabat.com

Layered Architecture segregates the app into layers, each having specific role. Common layers: Presentation, Application, Domain and Infrastructure.

Hexagonal Architecture where the domain model and business logic sits in the middle and is surrounded by dependencies such as UI, tests, databases, web services, etc

Event Driven Architecture - change in state triggers communication between services. Message queues tend to be used with this architecture.

CQRS (Command Query Responsibility Segregation) separates read operations (queries) from write (commands) to maximise performance and reduce complexity. Often used with Event Sourcing where changes are stored as a sequence of events)

To sum up

Rob Allen | @rob@social.akrabat.com

Domain-Driven Design focuses on developing software from the business's point of view with their domain and our model of it central to all the work we do.

The major things I want you to takeaway from strategic DDD are:

It introduces boundaries, ensures understandable communication between everyone and helps you think about the value that the software brings

To succeed, focus on the domain and domain logic and use a Ubiquitous language

The tactical patterns that have evolved in DDD exist because they are useful. They can help on projects not built with DDD in mind. Don't slavishly follow them as they are patterns, not commands from above.

"Domain-Driven Design is about creating
shared understanding of the problem
space that is reinforced ubiquitously via
conversations, code and diagrams."

Nick Tune

Rob Allen | @rob@social.akrabat.com

I want to leave you this thought.

DDD provides a set of practices for a collaborative approach to building software from the perspective of the business (the domain).

This is all strategic. The tactical nitty gritty of how do your code doesn't really matter in the grand scheme of things.

Don't go overboard. One domain, one bounded context usually enough to get started.

Thank you!

Rob Allen | @rob@social.akrabat.com

Photo Credits
- Event Storming: H Schwentner, https://commons.wikimedia.org/w/index.php?curid=57766348
- Story Mapping: D Fujihara, https://www.flickr.com/photos/49942291@N06/6271934371

Rob Allen | @rob@social.akrabat.com

https://commons.wikimedia.org/w/index.php?curid=57766348
https://www.flickr.com/photos/49942291@N06/6271934371

	Context maps
	Photo Credits

