
An introduction to

Domain Driven Design

Rob Allen, November 2024

Let's talk about one way to design software that I feel works really well.

It started with a book

Rob Allen | @akrabat | social.akrabat.com/@rob

Came out in mid-2003, nearly 21 years ago. Still relevant today.

Not many tech books last, this one does.

The key is in the sub-head.

mailto:social.akrabat.com/@rob

Rob Allen | @akrabat | social.akrabat.com/@rob

Can't just sit down and type code to create an application. Well only for trivial cases, not complex. To create good software, have to know what software is all about.

Can't create a insurance software unless you have a good understanding of insurance, one must understand the domain of insurance.

I'm interested in this and want to talk to you about. Software is complex because domain complexity (the problem we're solving for the business) mixes with technical complexity (How to do it)

There's always this complexity. Domain-Driven Design is an approach to help with this

mailto:social.akrabat.com/@rob

DDD provides for the

Strategic and Tactical

Rob Allen | @akrabat | social.akrabat.com/@rob

Domain-Driven Design is a large topic that we can split into two parts.

Strategic Design - big picture - we address the strategy behind the direction of the business.

Tactical Design - the nitty gritty of the details using domain modelling patterns

Let's start with Strategic design

mailto:social.akrabat.com/@rob

Strategic Design

Rob Allen | @akrabat | social.akrabat.com/@rob

We're understanding the broader picture of our software and aligning with the business requirements

We find out what's part of what we're problem and what isn't

mailto:social.akrabat.com/@rob

Domains & Models

Rob Allen | @akrabat | social.akrabat.com/@rob

We solve complex problems by using models - a view of the problem domain. aka problem space

Not complete reality of the problem space, just enough to meet the business use-cases (problems) in our software.

Expressions of the model: Code, diagram, docs - all use the same language

mailto:social.akrabat.com/@rob

Use-case (Problem): A passenger needs to navigate the London Underground

Domain: The London Underground railway network

Model: The Tube Map by Harry Beck in 1931

Map has little relationship to geography, so a useless model for the railway's civil engineers

A Domain is

something in the real-world

Rob Allen | @akrabat | social.akrabat.com/@rob

A subject and a set of processes involving people to achieve a goal

Not just 'a railway', but what is done by people with the railway

mailto:social.akrabat.com/@rob

A Domain is

the subject of our project

Rob Allen | @akrabat | social.akrabat.com/@rob

We might call this the problem space

It's the bit we care about for creating our software, not the rest of the world

mailto:social.akrabat.com/@rob

A Domain is

understood by experts in the space

Rob Allen | @akrabat | social.akrabat.com/@rob

Rarely consistently explained between experts!

mailto:social.akrabat.com/@rob

A Domain Model is

a representation of the Domain

Rob Allen | @akrabat | social.akrabat.com/@rob

Which leads us to the domain model

The domain model communicates the domain between domain experts and developers

mailto:social.akrabat.com/@rob

A Domain Model is

an abstraction of reality

Rob Allen | @akrabat | social.akrabat.com/@rob

The domain model allows use to deal with the complexity of the real world

Not the full picture; leaves out unnecessary information

Is organised, to divide it up and make it comprehensible

Tube map is a good model as it abstracts what's not required for the domain it's solving

mailto:social.akrabat.com/@rob

A Domain Model is

expressed as diagrams, words, code

Rob Allen | @akrabat | social.akrabat.com/@rob

Not one specific diagram; it's the idea that the diagram conveys.

Not just knowledge in an experts head; It's organised and a selective abstraction of that knowledge

A diagram, code, a sentence, post-it notes can all express a domain model and communciate it

mailto:social.akrabat.com/@rob

Expressed as a diagram

Rob Allen | @akrabat | social.akrabat.com/@rob

Here's a simple example of how I start expressing a domain model.

I like simple diagrams with boxes and lines

I start with broad concepts and drill down

mailto:social.akrabat.com/@rob

Building domain knowledge

Rob Allen | @akrabat | social.akrabat.com/@rob

mailto:social.akrabat.com/@rob

"We have really everything in common
with America nowadays except, of
course, language"

Oscar Wilde

Rob Allen | @akrabat | social.akrabat.com/@rob

This could be said of our domain experts and our developers - two nations divided by a common language. Really common to see developers and business people using the same words to mean different things.

Developers leak technical terms and business people leak jargon

Which brings us to...

mailto:social.akrabat.com/@rob

Ubiquitous Language

Rob Allen | @akrabat | social.akrabat.com/@rob

This is the most important part of DDD. As Wilde noted, language is hard

When we speak, we think that we are clear: not true. We're bad listeners, don't pick up the nuance - thinking about what to say next.

In a conversation, we can end up talking at cross purposes because we have misunderstood the other person.

mailto:social.akrabat.com/@rob

Ubiquitous Language is

The agreed concepts, meanings and
terms for the project

Rob Allen | @akrabat | social.akrabat.com/@rob

We need a common language or vocabulary between the developers and the business

That is limited to the domain problem

It describes how business itself thinks and operates

Ensures that the team are all on the same page, using the same words for the same thing

mailto:social.akrabat.com/@rob

You have to talk!

Rob Allen | @akrabat | social.akrabat.com/@rob

How do we create a Ubiquitous Language for our team and project?

Explore how the business operates

* Identify the business processes

* Find the inputs and outputs

* Document it all!(pictures, use-cases, glossary, workflow-diagrams, etc.)

mailto:social.akrabat.com/@rob

Ubiquitous Language is

Foundational to implementing
Domain Driven Design

Rob Allen | @akrabat | social.akrabat.com/@rob

It's the right at the front of the DDD book. DDD is all about modelling the Domain. We can't have a model if we can't describe it.

As Evans puts it: 'A project faces serious problems when its language is fractured'

The cost of misunderstanding is very high. Not only frustration, but lost time and real money

Talk about Bounded Contexts here

mailto:social.akrabat.com/@rob

In Domain-Driven Design

Everything revolves around
Ubiquitous Language

Rob Allen | @akrabat | social.akrabat.com/@rob

Use correct language always: initial design, through build, QA, launch and ongoing revenue

Use the terms of the Ubiquitous Language in the codebase, in the docs, in reports

Language changes over time, so terms that seemed right at the start will change as we understand more.

When this happens, refactor the code to new term. Seems like work, but a year later, that mismatch will hurt the project.

mailto:social.akrabat.com/@rob

Observations about
creating a domain model

Rob Allen | @akrabat | social.akrabat.com/@rob

Rare that the first idea of the model is the best one. Try different ideas to see which is best

A model is not static. It evolves with new business cases and new understanding

YAGNI applies! Don't model real life - only model what's needed for the business use-cases

mailto:social.akrabat.com/@rob

Focus effort
where it matters

Rob Allen | @akrabat | social.akrabat.com/@rob

Identify the core domain and core complexity to focus on. Core domain is why you are writing the software in the first place.

As DDD is expensive and time consuming, use it where it matters

Use simpler design/off-the-shelf elsewhere - e.g. you might use Laravel Sanctum for your SPA auth

mailto:social.akrabat.com/@rob

Knowledge Crunching

Rob Allen | @akrabat | social.akrabat.com/@rob

Distil relevant information from the problem domain. Collaborate with business people (domain experts)!

Gain knowledge using whiteboards, talking in the kitchen, brain storming, prototyping, etc.

Do not need formal notation - just arrows, words and maybe circles around the words

Talk to the right people. e.g. tube map stakeholders may be marketing & sales dept, not engineering

mailto:social.akrabat.com/@rob

Knowledge Crunching

Event Storming

Rob Allen | @akrabat | social.akrabat.com/@rob

Big Picture workshop, explores lots of stories within the system, invented by Alberto Brandolini in 2012

Interactive with post-it notes on the walls. Different post-it notes for events. This is a group modelling technique.

mailto:social.akrabat.com/@rob

By Henning Schwentner - CC BY-SA 4.0

Designed to be fun, efficient & straightforward

Process: Find domain events (orange). For each, find command (blue), then actors (yellow), business processes (purple), views (green)

Interactive discussions, everyone participates, adds post-its and moves them as we learn

As I said big picture

Knowledge Crunching

User Story Mapping

Rob Allen | @akrabat | social.akrabat.com/@rob

Diving deeper into each event, look at the process from the user's POV.

Map user stories in 2 dimensions, to visualise the user journeys

Helps to understand the product's functionality and the relationship between different functionalities from the user's point of view.

Builds a clearer shared vision about the product and its purpose.

mailto:social.akrabat.com/@rob

By Dai Fujihara - CC BY-SA 2.0

Horizontal axis is user activities - the main tasks/goals that users want to use the product for as a narrative flow (this, then that, then the other).

Under each one, the steps belonging to it (aka tasks) then draw a line and write the user stories for the tasks, arranged vertically in terms of priority

blue lines across the map are measurable outcomes for the users - aka releases (MVP, 1.0, 1.1, etc)

Knowledge Crunching

Event Modelling

Rob Allen | @akrabat | social.akrabat.com/@rob

Looking at how information changes within the system over time

Deeper dive into certain stories - creating a blueprint for a solution

mailto:social.akrabat.com/@rob

Model change over time

Rob Allen | @akrabat | social.akrabat.com/@rob

We build a detailed picture of the events of a system over time and how they affect state

Time is the key concept as it looks at lifecycles. Exposes more understanding of the system as a result.

Tend to use at detailed design stage in conjunction with wireframes and data models

Trigger, Command, Event, State Change, View

mailto:social.akrabat.com/@rob

Managing Domain
Complexity

Rob Allen | @akrabat | social.akrabat.com/@rob

Over time models lose integrity and explicitness due to growth in complexity, multiple teams working on it

Language becomes ambiguous.

We solve this by dividing into 'bounded contexts'

mailto:social.akrabat.com/@rob

Bounded Contexts

define the boundary for a model

Rob Allen | @akrabat | social.akrabat.com/@rob

A Bounded Context defines the boundary within which a particular model is defined and applicable. Each part of the model is understood in its specific context

Language is per context. 'The word good has many meanings. For example, if a man were to shoot his grandmother at a range of five hundred yards, I should call him a good shot, but not necessarily a good man.' (G.K. Chesterton, Orthodoxy, 1909)

mailto:social.akrabat.com/@rob

Bounded Contexts

protect the domain model from
dilution

Rob Allen | @akrabat | social.akrabat.com/@rob

We don't want leakage of meaning or operations between different contexts

However, we can use specific terminology within each bounded context, eg. Customer becomes lead in sales context, passenger in booking context, subscriber in marketing context

If this is not done, then the software risks becoming a Big Ball of Mud

The Service Layer is the concrete implementation of the bounded context boundary

The job of these services is to expose business use-cases and delegate them to the model to fulfil them

mailto:social.akrabat.com/@rob

Bounded Contexts

are composed into an application

Rob Allen | @akrabat | social.akrabat.com/@rob

Compose bounded contexts to create Applications. Each bounded context is:

Autonomous & Authoritative within its space - owns its UI - or delegates to other bounded context for UI matters,

B.C. provides the logical frame inside of which the model evolves.

Code-wise, Modules are used to organize the elements of a model, so Bounded Context encompasses the Module.

mailto:social.akrabat.com/@rob

Context maps

Rob Allen | @akrabat | social.akrabat.com/@rob

Which leads us to how we document this. The easiest way is a context map - jargon for 'a picture'

Show all models within their bounded contexts - Just a high-level diagram - could be hand drawn

Communicates holistic picture of the contexts in play. Simple enough to be understood by everyone

For legacy systems, also show areas not understood - where the big balls of mud are

mailto:social.akrabat.com/@rob

Tactical Design

Rob Allen | @akrabat | social.akrabat.com/@rob

Strategic design deals with abstract wholes, whereas tactical design deals with classes and modules.

This is hands-on. It's code-level, the design patterns we use to build the software.

DDD is technically agnostic, implementation is flexible and open to innovation.

The Blue Book is not a bible any more than Fowler's Patterns of Enterprise Application Architecture

With that said, let's look at some common principles and patterns you see used in DDD implementations

mailto:social.akrabat.com/@rob

Tactical Design

Entities, Value Objects &
Aggregates

Rob Allen | @akrabat | social.akrabat.com/@rob

These are foundational in DDD codebases and help express the domain in the codebase

Value Objects are identified by their attributes and are immutable. Commonly used to express some quantity, measure or descriptor.

Entities are identified by their identity and are not interchangeable. They are mutable and change state over their lifecycle and can contain rules that encapsulate behaviour essential to the concept that they represent. (e.g. claim amount cannot be bigger than insured amount)

Aggregates are just a cluster of related objects that operate together and are treated as a unit. e.g an order with its line items

mailto:social.akrabat.com/@rob

Entities & Value Objects

Rob Allen | @akrabat | social.akrabat.com/@rob

Talk about how the address is a value object within the passenger

and so we can extract, simplify and increase our understanding

mailto:social.akrabat.com/@rob

Tactical Design

Storing State

Rob Allen | @akrabat | social.akrabat.com/@rob

We need to store state in applications. Usually to a database or an API

Traditionally in DDD we use repositories and mappers for this to separate from the domain model

Practically, this can be difficult in some frameworks which use Active Record as their ORM

Personally, I wouldn't worry about it and go with the framework's view of the world

mailto:social.akrabat.com/@rob

Tactical Design

Services

Rob Allen | @akrabat | social.akrabat.com/@rob

For processes that don't belong to a specific entity or value object, then them into a Service class

They represent activities in the system and generally operate on multiple entities. They are stateless, identity-less as a result

mailto:social.akrabat.com/@rob

Services

Rob Allen | @akrabat | social.akrabat.com/@rob

Talk about how JourneyRouter is a business operation that uses an entity and has no state itself

It is a Domain Service (business operations). Also Application Services (facade between the app and the domain) and Infrastructure Services (reusable across applications: emails, logging)

Deciding when to use a service instead of putting the logic in an entity or a value object is a significant aspect of designing a good domain model.

which leads us to Architecture.

mailto:social.akrabat.com/@rob

Tactical Design

Architecture

Rob Allen | @akrabat | social.akrabat.com/@rob

This is how you organise and think about your codebase

mailto:social.akrabat.com/@rob

Architecture

Rob Allen | @akrabat | social.akrabat.com/@rob

DDD expounded the Layered architecture, but there are many choices.

Let's take a quick look at three options

mailto:social.akrabat.com/@rob

Architecture

Rob Allen | @akrabat | social.akrabat.com/@rob

Segregates the app into layers, each having specific role. Common layers: Presentation, Application, Domain and Infrastructure.

Layers above can interact with layers below

Can lead to unwanted coupling if you're not careful - should your UI templates send emails directly?

mailto:social.akrabat.com/@rob

Architecture

Rob Allen | @akrabat | social.akrabat.com/@rob

Hexagonal Architecture where the domain model and business logic sits in the middle and is surrounded by dependencies such as UI, tests, databases, web services, etc

Domain code is shielded by adapters, so has clear interfaces with flexiblity

Downside: complex with more abstraction, so harder to learn and work with

mailto:social.akrabat.com/@rob

Architecture

Rob Allen | @akrabat | social.akrabat.com/@rob

Command Query Responsibility Segregation separates read operations (queries) from write (commands) to maximise performance and reduce complexity.

Often used with Event Sourcing where changes are stored as a sequence of events

Great for scaling, but complex

Downside: Segregation into read and write models can result in coupling of domain model entities or duplication

Arguably better to use it as a tactical pattern for specific parts than a general architectural one

mailto:social.akrabat.com/@rob

To sum up

Rob Allen | @akrabat | social.akrabat.com/@rob

Domain-Driven Design focuses on developing software from the business's point of view with their domain and our model of it central to all the work we do.

The major things I want you to takeaway from strategic DDD are:

It introduces boundaries, ensures understandable communication between everyone and helps you think about the value that the software brings

Don't get hung up on the tactical design patterns. They aren't gospel, but the ideas behind them are useful.

mailto:social.akrabat.com/@rob

To sum up

Rob Allen | @akrabat | social.akrabat.com/@rob

DDD focuses on understanding the business problem by modelling in terms of the domain

It promotes effective and collaborative communication through a common language.

Don't worry about all the details. To succeed, focus on the domain and use a Ubiquitous language

The tactical side is up to you!

mailto:social.akrabat.com/@rob

"Domain-Driven Design is about creating
shared understanding of the problem
space that is reinforced ubiquitously via
conversations, code and diagrams."

Nick Tune

Rob Allen | @akrabat | social.akrabat.com/@rob

I want to leave you this thought

It's all about a collaborative approach to building software from the perspective of the business

This is all strategic. The tactical nitty gritty of how do your code doesn't really matter in the grand scheme of things.

Don't go overboard. One domain, one bounded context usually enough to get started.

mailto:social.akrabat.com/@rob

Thank you!

Rob Allen | @akrabat | social.akrabat.com/@rob

mailto:social.akrabat.com/@rob

Photo Credits
- Risk: I. Hassan, https://www.flickr.com/photos/iahvector/15342391100
- Event Storming: H Schwentner, https://commons.wikimedia.org/w/index.php?curid=57766348
- Story Mapping: D Fujihara, https://www.flickr.com/photos/49942291@N06/6271934371

Rob Allen | @akrabat | social.akrabat.com/@rob

https://www.flickr.com/photos/iahvector/15342391100
https://commons.wikimedia.org/w/index.php?curid=57766348
https://www.flickr.com/photos/49942291@N06/6271934371
mailto:social.akrabat.com/@rob

	Context maps
	Entities & Value Objects
	Services
	Architecture
	Architecture
	Architecture
	Architecture
	Photo Credits

