
GraphQL, REST or RPC?
Making the choice!

Rob Allen
SymfonyCon, December 2024

My name's Rob Allen & I'm an API consultant. As much an API integrator as an API developer. Hire me!

Today we're going to look at the different architectural API styles, understand how they work, and what their strengths and weaknesses are.

MOVE TO NEXT SLIDE and talk details

APIs can be realised in any style
but, which makes the most sense?

Rob Allen @akrabat @rob@akrabat.com

We can break API architecture into three: GraphQL, RESTful & RPC style

All have pros a?nd cons and which one you pick depends on what balance of features and requirements works best for your situation

We'll look at each in turn, how they work and then look at the pros and cons - which properties are the ones you care about, so let's dive in

Which one makes the most sense? The short answer is that It depends!

RPC APIs

Rob Allen @akrabat @rob@akrabat.com

Lets start with the oldest style: RPC APIs.

RPC stands for Remote Procedural Call

NEXT SLIDE

RPC APIs
• Call a function on a remote server

Rob Allen @akrabat @rob@akrabat.com

It does what it says on the tin: You call a function (procedure) on a remote server

RPC APIs
• Call a function on a remote server

• Common implementations: JSON-RPC, SOAP, gRPC, tRPC

Rob Allen @akrabat @rob@akrabat.com

The specific payloads depend on the implementation

JSON-RPC can be hand-built, SOAP and gRPC not so much.

tRPC is Typescript only

RPC APIs
• Call a function on a remote server

• Common implementations: JSON-RPC, SOAP, gRPC, tRPC

• Tends to require a schema (OpenRPC, WSDL, Protocol Buffer)

Rob Allen @akrabat @rob@akrabat.com

You need the schema to work out function names and parameters.

JSON-RPC doesn't have a schema system built-in, so people tend to use OpenPRC. tPRC shares files between FE and BE

JSON-RPC
Request:
 POST / HTTP/1.1
 Host: localhost:8545

 {
 "jsonrpc":"2.0",
 "id":1,
 "method":"createUser",
 "params": {"name": "Rob Allen", "email: "rob@akrabat.com"}
 }

Rob Allen @akrabat @rob@akrabat.com

Note that this is RPC, so we POST to / with a body that has the info

In this case, we are creating a user and passing the name parameter to the createUser function

Yes, it's just like a function call

JSON-RPC
Response:
 {
 "jsonrpc": "2.0",
 "id":1,
 "result": {"id": 1234}
 }

Rob Allen @akrabat @rob@akrabat.com

Response is simple JSON, with the result of our function call helpfully in the 'result

RESTful APIs

Rob Allen @akrabat @rob@akrabat.com

I imagine that everyone has heard of REST and probably written one or integrated against one.

RESTful APIs
• Operate on a representation of the state of a resource

Rob Allen @akrabat @rob@akrabat.com

That's quite a mouthful, but gets to the heart of what a RESTful API is

A lot of what we call RESTful APIs are more RPC-like in HTTP clothing

RESTful APIs
• Operate on a representation of the state of a resource

• HTTP native

Rob Allen @akrabat @rob@akrabat.com

HTTP verbs for operations (GET, POST, DELETE, PUT, PATCH), Headers control content formats

Status codes have meaning, Layered system with the client and proxies part of it

RESTful APIs
• Operate on a representation of the state of a resource

• HTTP native

• Hypermedia controls

Rob Allen @akrabat @rob@akrabat.com

Links for state transitions (what to do next)

Links for related resources

(Great for discoverability)

Most Restful APIs don't do this, so we use OpenAPI specifications more often than not

RESTful APIs: Request
POST /users/
Content-Type: application/json
Accept: application/json

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com"
}

Rob Allen @akrabat @rob@akrabat.com

Creating our user via REST.

Method matters. We are POSTing to a collection of users to create a new one

POST requires a body and the Content-Type header tells the server how to interpret our body data.

RESTful APIs: Response
HTTP/1.1 201 Created
Content-Type: application/hal+json
ETag: dfb9f2ab35fe4d17bde2fb2b1cee88c1

{
 "name": "Rob Allen"
 "email": "rob@akrabat.com",
 "_links": {
 "self": "https://api.example.com/user/1234"
 }
}

Rob Allen @akrabat @rob@akrabat.com

Response is all about HTTP. Status code matter: 201 means that we created the resource.

Content-Type tells us how to decode the returned representation. This is HAL so we can interpret the _links property

ETag allows us to detect edit clashes and use HTTP caching. It's the ID of this particular version of this resource. Use If-Match header to detect mid-air edit collisions 412 (Precondition Failed) returned if someone else edits the resource before we do our update. Use If-None-Match header to query if item has changed. Get 304 (Not Modified) if same, saving time and network resources if our cached copy is still fresh.

GraphQL APIs

Rob Allen @akrabat @rob@akrabat.com

and now GraphQL. This is the newer kid on the block

GraphQL was invented by Facebook in 2015 for their particular needs for their mobile applications.

GraphQL APIs
• Retrieve only the data you need on consumer side

Rob Allen @akrabat @rob@akrabat.com

The client picks the specific fields that it needs. No wastage

GraphQL APIs
• Retrieve only the data you need on consumer side

• Reduce the number of calls to retrieve data with embedded
resources

Rob Allen @akrabat @rob@akrabat.com

You can ask for nested resources to virtually any depth - reduces round trips

GraphQL APIs
• Retrieve only the data you need on consumer side

• Reduce the number of calls to retrieve data with embedded
resources

• Self-describing, typed schema

Rob Allen @akrabat @rob@akrabat.com

Can query a GraphQL API for its details. This data is typed too.

GraphQL comes with a full ecosystem which ease both API provider and consumer job.

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

Reading and writing actions are separated in 2 sets: queries & mutations

Let's quickly look through how a query is structured

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

Query's are wrapped in a query block. We are retrieving an author record with a name of Anne Macffrey

We list the properties of the author that we want returned. ID and name in this case and we won't get anything else.

Queries
query {
 author(name: "Anne McCaffrey") {
 id, name
 books(first: 5) {
 totalCount
 edges {
 node {
 id, title
 }
 }
 }
 }
}

Rob Allen @akrabat @rob@akrabat.com

We can also ask for a sub-resource at the same time. In this case the books written by Anne

It's common for their to be some limitations on how many items you can return in the query. If you want all, then you probably need do to pagination. totalCount is the property that we want for the collection set - not the set fields.

For each book in the collection, node is the book itself, so we specify the book properties we want at that level: ID & title in this case.

Queries: Result
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Anne McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen @akrabat @rob@akrabat.com

This is the returned result

NEXT SLIDE IS A BREAKDOWN OF THE CODE

Queries: Result
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Anne McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen @akrabat @rob@akrabat.com

The data comes back shaped as we specified wrapped in a section named data

Firstly, the author's properties that we asked for - id and name.

Queries: Result
 "data": {
 "author": {
 "id": "MXxBdXRob3J8ZjA",
 "name": "Anne McCaffrey",
 "books": {
 "totalCount": 6,
 "edges": [
 {
 "node": {
 "id": "MXxCb29rfGYwNzU",
 "title": "Dragonflight"
 }
 },

Rob Allen @akrabat @rob@akrabat.com

Now our books collection with its totalCount property

Our API only knows about 6 Anne McCaffery books, when she wrote 17 books in the Dragonriders of Pern series alone!

Each book is a node in our edges array. Again, we only get back the properties we asked for. The list of edges continues off the slide.

Mutations work essentially the same way

Which to pick?

Rob Allen @akrabat @rob@akrabat.com

So which should you pick?

I don't have a particularly strong view as I'm generally a pragmatist

so here's some of my thoughts to help the decision

Lamborghini or Ferrari?
Rob Allen @akrabat @rob@akrabat.com

Lamborghini or Ferrari? This is a preference

Totally valid to create the one you prefer to write! It will be better

No one looks forward to writing a SOAP API!

Lamborghini or Truck?
Rob Allen @akrabat @rob@akrabat.com

Lamborghini or Pickup Truck?

This depends on what you are optimising for. Easier to take son to Uni in the truck.

There are some important differences between these API styles that may matter to you.

Let's look at them

Considerations
• What is it to be used for?

• Response customisation requirements

• HTTP interoperability requirements

Rob Allen @akrabat @rob@akrabat.com

I think that consideration of these 3 things are important as they will nudge you in the right direction.

What are we going to be doing? Do we need specific responses? Do we care about HTTP interoperability?

NEXT SLIDE QUICKLY

What is it to be used for?
• Do you control both server and client?

• How many users are expected?

• What is the skill level of your integrators?

Rob Allen @akrabat @rob@akrabat.com

Talk though each bullet point

Response customisation
• GraphQL is a query-first language

• REST tends towards less customisation

• With RPC you get what you're given!

Rob Allen @akrabat @rob@akrabat.com

GraphQL: Choose your fields & nested-resources

REST: HyperText tends to prefer separate endpoints for sub-resources (through HTTP/2!). You can use a DSL such as JSON-API for customisation, but uncommon

RPC: You're calling a function!

Response customisation
• GraphQL is a query-first language

• REST tends towards less customisation

• With RPC you get what you're given!

(Your data layer's ability to efficiently retrieve the data is still key!)

Rob Allen @akrabat @rob@akrabat.com

To state the obvious. Nothing here fixes your data layer and that's probably where the real performance gains are

Performance
• REST and RPC puts server performance first

• GraphQL puts client performance first

Rob Allen @akrabat @rob@akrabat.com

RPC: the functions are do the work and you control them

With REST's tenet of client-server autonomy, the client doesn't know business logic.

GraphQL encourages client business logic and the client in control

Caching
• RPC, REST and GraphQL can all cache in application layer

• REST can additionally cache at HTTP layer

Rob Allen @akrabat @rob@akrabat.com

Data Transfer
RPC:

 POST /api
 {
 "method": "getAvatar",
 "userId": "1234"
 }

 {
 "result": "(base64 data)"
 }

Rob Allen @akrabat @rob@akrabat.com

As a very minor note, it's interesting to think about the response customisation that RESTS gives.

If we consider retrieval of a user's avatar, in RPC, you call getAvatar and get back the image data

Data Transfer
RPC: GraphQL:

 POST /api
 {
 "method": "getAvatar",
 "userId": "1234"
 }

 {
 "result": "(base64 data)"
 }

 query {
 avatar(userId: "1234")
 }

 {
 "data": {
 "avatar": "(base64 data)"
 "format": "image/jpeg"
 }
 }

Rob Allen @akrabat @rob@akrabat.com

and the same for GraphQL

Data Transfer
REST:

 GET /user/1234/avatar
 Accept: application/json

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "data": "(base64 data)"
 }

Rob Allen @akrabat @rob@akrabat.com

and the same for REST

Data Transfer
REST: REST:

 GET /user/1234/avatar
 Accept: application/json

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "data": "(base64 data)"
 }

 GET /user/1234/avatar
 Accept: image/jpeg

 HTTP/1.1 200 OK
 Content-Type: image/jpeg

 <jpg image data>

Rob Allen @akrabat @rob@akrabat.com

But with HTTP Media Types, we can also get back data that can be served directly by browsers

We can also do this with data formats like PDF or CSV

This is so useful, that a lot of APIs offer this regardless.

Errors
• RPC: Returned payload contains an error object of some form

• REST: HTTP semantics; status code

• GraphQL: Top level error object for Request errors and Field
errors

Rob Allen @akrabat @rob@akrabat.com

(Don't go into detail as we cover on next two slides)

REST Errors
HTTP/1.1 503 Service Unavailable
Content-Type: application/problem+json
Content-Language: en

{
 "status": 503,
 "type": "https://example.com/service-unavailable",
 "title": "Could not authorise user.”,
 "detail": "Auth service is down for maintenance.”,
 "instance": “https://example.com/maintenance/2023-05-12",
 "error_code": "AUTHSERVICE_UNAVAILABLE"
}

Rob Allen @akrabat @rob@akrabat.com

HTTP Status codes: 4xx and 5xx

Human readable error messages

Error code for computers

For REST, if you don't have an error representation in your schema, use RFC 9457

GraphQL Errors
"errors": [
 {
 "message": "Name for character with ID 7 could not be fetched.",
 "path": ["friends", 1, "name"]
 }
],
"data": {
 "friends": [
 { "id": "3", "name": "F'lar", "species": "human"},
 { "id": "7", "name": null, "species": "dragon" },
 { "id": "9", "name": "Mnementh", "species": "dragon" },

Rob Allen @akrabat @rob@akrabat.com

Request errors are terminal, with no data returned. e.g. syntax or validation

Field errors return partial results. You have to look at each field in turn

Check the docs for the format of the errors object. It's unclear in the spec if it follows any particular schema.

Of course you can still get a 500 error if it's an infrastructural issue. If it gets as far as the GraphQL server, then you'll get a 200.

Versioning
• RPC, GraphQL and REST can all version via evolution as easily as

each other

Rob Allen @akrabat @rob@akrabat.com

Don't let anyone tell you graphql doesn't need versions! Shopify ended up using versions.

Design of a schema that doesn't break BC in the future is very very hard though!

In all types of APIs

Versioning
• RPC, GraphQL and REST can all version via evolution as easily as

each other

• GraphQL is very good for deprecation of specific fields

Rob Allen @akrabat @rob@akrabat.com

You can monitor if anyone is using it and reach out directly.

Design considerations

It's always hard!

Rob Allen @akrabat @rob@akrabat.com

GraphQL: need to control naming and also choose what can be nested.

Need to balance DX of API vs internal app capabilities

Easy for a query to accidentally DOS you (Talk about complexity)

Design considerations

It's always hard!

Rob Allen @akrabat @rob@akrabat.com

REST: need to balance data sent vs number of requests

Easy to end up with clients needing to make too many calls

REST Uniform interface encourages consistency and easier learning curve

It's your choice

Rob Allen @akrabat @rob@akrabat.com

It's about control. In REST, the structure of the request object is defined on the server. In GraphQL, you define the object on the client.

A big part of the purpose of GraphQL is to eliminate the multiple round-trips. If that's not a pain point for you, maybe it's not necessary.

GraphQL vs REST is like comparing SQL with noSQL. There's very little that you can't do with either, but sometimes one is better suited.

If you suck at providing a REST API,
you will suck at providing a GraphQL API

Arnaud Lauret, API Handyman

Rob Allen @akrabat @rob@akrabat.com

I want to leave you with this last thought: The API style doesn't really matter. What matters is your design

Your second attempt will be better than your first

As it's newer, GraphQL designs tend to build in the lessons from the last RESTful API

I like them both & would be happy with a well designed one over a hard-to-use other

Thank you!

Rob Allen @akrabat @rob@akrabat.com

Photo credits
- Choose Pill: https://www.flickr.com/photos/eclib/4905907267
- Lamborghini & Ferrari: https://akrab.at/3w0yFmg
- Lamborghini & Truck: https://akrab.at/3F4kAZk
- '50s Computer: https://www.flickr.com/photos/9479603@N02/49755349401
- Blackboard: https://www.flickr.com/photos/bryanalexander/17182506391
- Crash Test: https://www.flickr.com/photos/astrablog/4133302216

Rob Allen @akrabat @rob@akrabat.com

https://www.flickr.com/photos/eclib/4905907267
https://akrab.at/3w0yFmg
https://akrab.at/3F4kAZk
https://www.flickr.com/photos/9479603@N02/49755349401
https://www.flickr.com/photos/bryanalexander/17182506391
https://www.flickr.com/photos/astrablog/4133302216

	RPC APIs
	RPC APIs
	RPC APIs
	JSON-RPC
	JSON-RPC
	RESTful APIs
	RESTful APIs
	RESTful APIs
	RESTful APIs: Request
	RESTful APIs: Response
	GraphQL APIs
	GraphQL APIs
	GraphQL APIs
	Queries
	Queries
	Queries
	Queries: Result
	Queries: Result
	Queries: Result
	Considerations
	What is it to be used for?
	Response customisation
	Response customisation
	Performance
	Caching
	Data Transfer
	Data Transfer
	Data Transfer
	Data Transfer
	Errors
	REST Errors
	GraphQL Errors
	Versioning
	Versioning
	Design considerations
	Design considerations
	Photo credits

