
OAuth 2.1
The Future of API Security

Rob Allen, May 2025

My name's Rob Allen & I'm an API consultant. As much an API integrator as an API developer. Hire me!

MOVE TO NEXT SLIDE and talk details

OAuth is the standard for securing access to APIs

Rob Allen ~ akrabat.com

Today we're going to talk about OAuth. I want to look at what we've learned over the years since 2.0 was released and how this has lead us to the OAuth 2.1

OAuth allows a user to grant access to their data without sharing their credentials.

It is a best practice for API authorisation and has proven incredibly flexible over the years.

OAuth 2.0
A Refresher

Rob Allen ~ akrabat.com

Fundamentally, OAuth2.0 is all about using a short-lived token that can optionally be refreshed by the client

It's all about how we get that token the the client

OAuth 2.0 Roles
• Resource Owner (The User)

• Resource Server (The API)

• Client (The application that uses the API)

• Authorization Server (OAuth server)

Rob Allen ~ akrabat.com

Firstly we have the concept of roles. This does the another key thing about OAuth 2.0:

It separates the user, the client application, the API and the authorization server

OAuth 2.0 Protocol Flows
• Resource Owner Password Credentials

• Authorization Code

• Implict

• Client Credentials

Rob Allen ~ akrabat.com

A Protocol Flow (aka a Grant) is the way that the user logs in and we give a token to the client

Password Credentials Flow
For logging into 1st party apps

Rob Allen ~ akrabat.com

Application sends username/password to the credentials server and gets back a token

Use token for all requests from this point on

Password Credentials Flow

Rob Allen ~ akrabat.com

Password Credentials Flow

Rob Allen ~ akrabat.com

Password Credentials Flow

Rob Allen ~ akrabat.com

Password Credentials Flow

Rob Allen ~ akrabat.com

Authorization Code Flow
For logging into 3rd party websites

Rob Allen ~ akrabat.com

This is the one that everyone knows and thinks is OAuth 2.0

Only works when you have a secure back channel

Authorization Code Flow

Rob Allen ~ akrabat.com

Authorization Code Flow

Rob Allen ~ akrabat.com

Authorization Code Flow

Rob Allen ~ akrabat.com

Authorization Code Flow

Rob Allen ~ akrabat.com

Authorization Code Flow

Rob Allen ~ akrabat.com

Authorization Code Flow

Rob Allen ~ akrabat.com

The authorisation server redirect the user back to the application wiht a code IN THE URL QUERY STRING

Authorization Code Flow

Rob Allen ~ akrabat.com

The application uses the back channel to convert the code to a token

It sends its application client secret to do so

Authorization Code Flow

Rob Allen ~ akrabat.com

The application uses the back channel to convert the code to a token

It sends its application client secret to do so

Authorization Code Flow

Rob Allen ~ akrabat.com

Implicit Flow
For logging into 3rd party apps and web SPAs

Rob Allen ~ akrabat.com

Similar to Authorization Code flow, but much less secure

The user enters their username/password on our website, not the app's.

Use token for all requests from this point on

Implict Flow

Rob Allen ~ akrabat.com

Implict Flow

Rob Allen ~ akrabat.com

Implict Flow

Rob Allen ~ akrabat.com

Implict Flow

Rob Allen ~ akrabat.com

Implict Flow

Rob Allen ~ akrabat.com

Implict Flow

Rob Allen ~ akrabat.com

This is the where we diverge from Authorization Code flow

The authorisation server redirect the user back to the application with the TOKEN ITSELF IN THE URL QUERY STRING

Implict Flow

Rob Allen ~ akrabat.com

Client Credentials Flow
For jobs that don't need user permission

Rob Allen ~ akrabat.com

The user enters their username/password on our website, not the app's.

Use token for all requests from this point on

Application gets token from credentials server for itself, not on behalf of a user

Use token for all requests from this point on

Client Credentials Flow

Rob Allen ~ akrabat.com

Application passes its client id and client secret to the authorization server

Client Credentials Flow

Rob Allen ~ akrabat.com

Client Credentials Flow

Rob Allen ~ akrabat.com

The benefit here is that our API can be made uniform as the authentication flow for a server or user looks the same. Secondly, the credentials are per client, so the secret is not shared so widely as an API key might be.

OAuth 2.0 Refresh token
• Allows the client to gain a new access token

• Refresh tokens need to be kept secure

• Authorization server can choose not to issue

Rob Allen ~ akrabat.com

Access tokens are short-lived, so there's a process to allow a client to get a new one from a refresh token

Only works for flows with a secure back channel as the refresh token is the keys to the kingdom

OAuth 2.0 Since 2012

Rob Allen ~ akrabat.com

The OAuth 2.0 Framework in 2012

Rob Allen ~ akrabat.com

OAuth 2.0 was published in 2012 and consisted of just 2 RFCS

Since then, lots has has changed

The OAuth 2.0 Framework Today

Rob Allen ~ akrabat.com

This diagram show 31 new RFCs since those original 2. We've learned a lot

This is why OAuth 2 is so powerful and useful, but some RFCs supercede or deprecate others

Key extensions since 2012
• RFC 7636: Authorization Code without a client secret (PKCE)

• RFC 8628: Device Authorization grant for devices

Rob Allen ~ akrabat.com

PKCE
• First created for mobile, but useful for all public clients

• Protects the authorization code in the redirect

• We know that the right client is converting the code to a token

Rob Allen ~ akrabat.com

Proof Key for Code Exchange - PKCE, pronounced Pixy

Problem: Auth code is returned in URL, so we need a client secret to turn an auth code into a token

No client secret in mobile or public apps, so no security from interception

PKCE workflow

Rob Allen ~ akrabat.com

PKCE workflow

Rob Allen ~ akrabat.com

PKCE workflow

Rob Allen ~ akrabat.com

PKCE workflow

Rob Allen ~ akrabat.com

PKCE workflow

Rob Allen ~ akrabat.com

Device Authorization Flow
For apps with no browser (or keyboard)

Rob Allen ~ akrabat.com

For apps with no browser (or keyboard)

Separates application that needs token from device that does authorisation

Only works when you have a secure back channel

Device Authorization Flow

Rob Allen ~ akrabat.com

Device Authorization Flow

Rob Allen ~ akrabat.com

Device Authorization Flow

Rob Allen ~ akrabat.com

Device Authorization Flow

Rob Allen ~ akrabat.com

Best Practices since 2012
• RFC 7900: Best Current Practice for OAuth 2.0 Security

• RFC 8653: OAuth 2.0 for Native Apps

• OAUTH-WG: OAuth 2.0 for Browser Apps

Rob Allen ~ akrabat.com

Over the years, as we've worked out how to do OAuth better, we have written down some best practices

We have a general best practices guide, a specific one for native apps and an in-progress one for browser apps which is getting close to full RFC approval

Best Current Practice
• Always use PKCE with Authorization Code

Rob Allen ~ akrabat.com

We've covered PKCE for mobile and SPAs. The best practice documents note that we should be using it for confidential clients too as it revents CSRF.

Best Current Practice
• Always use PKCE with Authorization Code

• Don't use Implicit flow; use Authorization Code (with PCKE)

Rob Allen ~ akrabat.com

Too insecure - no proof of client to give access token out

No longer serves a purpose as PCKE exists, so can use Authorization grant

Browser features have improved so SPAs can do Authorization grant easily

Best Current Practice
• Always use PKCE with Authorization Code

• Don't use Implicit flow; use Authorization Code (with PCKE)

• Don't use Password flow; use Authorization Code (with PCKE)

Rob Allen ~ akrabat.com

Exposes user name and password to application - don't want 3rd parties to see this

Even for 1st party, increases attack surface of the system

Trains users that it's okay to enter their password in more than one place. Makes phishing easier.

Difficult or impossible to add MFA or WebAuthn.

Best Current Practice
• Always use PKCE with Authorization Code

• Don't use Implicit flow; use Authorization Code (with PCKE)

• Don't use Password flow; use Authorization Code (with PCKE)

• Use exact string matching for redirect URIs

Rob Allen ~ akrabat.com

Prevents interception attacks of the auth code as it's easier to trick the system into redirecting users and their tokens to the wrong place

Best Current Practice
• Always use PKCE with Authorization Code

• Don't use Implicit flow; use Authorization Code (with PCKE)

• Don't use Password flow; use Authorization Code (with PCKE)

• Use exact string matching for redirect URIs

• No access tokens in query strings

Rob Allen ~ akrabat.com

Query strings no longer needed as browser can send headers nowadays

Prevents tokens ending up in logs or history

Best Current Practice
• Always use PKCE with Authorization Code

• Don't use Implicit flow; use Authorization Code (with PCKE)

• Don't use Password flow; use Authorization Code (with PCKE)

• Use exact string matching for redirect URIs

• No access tokens in query strings

• Refresh tokens must be sender constrained or one-time use

Rob Allen ~ akrabat.com

sender constrained = need more than just token to use it (client secret, mutual TLS). Otherwise, make it one time, so can detect if it's been stolen by second usage. Disable both in this situation

Best Current Practice
• Always use PKCE with Authorization Code

• Don't use Implicit flow; use Authorization Code (with PCKE)

• Don't use Password flow; use Authorization Code (with PCKE)

• Use exact string matching for redirect URIs

• No access tokens in query strings

• Refresh tokens must be sender constrained or one-time use

• ... plus other good implementation information!

Rob Allen ~ akrabat.com

There's more info in the Best PRactices guides, so make sure you read them as they include descriptions of attacks and how to solve

WHICH BRINGS US TO.... {next slide}

OAuth 2.1

Rob Allen ~ akrabat.com

My main goal with OAuth 2.1 is to capture the
current best practices in OAuth 2.0 as well as
its well-established extensions under a single
name.

Aaron Parecki

Rob Allen ~ akrabat.com

Key Objectives of OAuth 2.1
• Not a new protocol

Rob Allen ~ akrabat.com

It's a consolidation of OAuth 2.0 best practices. Doesn't break BC!

No new behaviour. No experimental features.

Key Objectives of OAuth 2.1
• Not a new protocol

• Simplifies the specification

Rob Allen ~ akrabat.com

Removes deprecated/insecure flows and other cases where a newer RFC obsoletes something in the original OAuth 2.0

Key Objectives of OAuth 2.1
• Not a new protocol

• Simplifies the specification

• Incorporation of Best Current Practices

Rob Allen ~ akrabat.com

We've learned a lot, so we can make 2.1 more secure which leads to more consistent implementations across the industry

OAuth 2.1 Flows
• Authorization Code + PKCE

• Device Authorization

• Client Credentials

Rob Allen ~ akrabat.com

There's just 3!

Implicit and Resource Owner Password Credentials flow are removed

Added Device credentials

Tokens
• Transfer only by HTTP header or POST form body

• Require sender contraints or one-time use refresh tokens

• Refined token management (shorter lifetimes, rotation
policies)

Rob Allen ~ akrabat.com

No transfer in a query string

Other things
• Redirect URIs must be exact matches

• State parameter is now mandatory for CSRF protection

• Confidential client now means a client that has credentials

• Otherwise it's public

Rob Allen ~ akrabat.com

Going forwards

Rob Allen ~ akrabat.com

Migrating to 2.1

Rob Allen ~ akrabat.com

Migrating to 2.1
• Review current implementation

Rob Allen ~ akrabat.com

Migrating to 2.1
• Review current implementation

• Adopt Authorization Code flow with PKCE

Rob Allen ~ akrabat.com

Migrating to 2.1
• Review current implementation

• Adopt Authorization Code flow with PKCE

• Remove deprecated flows

Rob Allen ~ akrabat.com

Migrating to 2.1
• Review current implementation

• Adopt Authorization Code flow with PKCE

• Remove deprecated flows

• Secure redirect Uris

Rob Allen ~ akrabat.com

Migrating to 2.1
• Review current implementation

• Adopt Authorization Code flow with PKCE

• Remove deprecated flows

• Secure redirect Uris

• Review and implement the Best Current Practices

Rob Allen ~ akrabat.com

Other relatively new OAuth features

Rob Allen ~ akrabat.com

Let's also look at some other things that you can do now

Other relatively new OAuth features
• Demonstrating Proof of Possession (RFC 9449)

• Mutual TLS (RFC 8705)

Rob Allen ~ akrabat.com

Improve the security of your bearer token

DPoP: Cryptographically bind access token to a particular client

Mutual TLS: Bind to a client certificate

Other relatively new OAuth features
• Demonstrating Proof of Possession (RFC 9449)

• Mutual TLS (RFC 8705)

• JWT Profile for Access Tokens (RFC 9068)

• JWT-Secured Authorization Requests (RFC 9101)

Rob Allen ~ akrabat.com

JWT Profile for Access Tokens: Best Practices Standard

JWT-Secured Authorization Request: signed data in authorization request, even if in front channel. Can't be tampered, but can be seen. Also, only real client can initiate request

Other relatively new OAuth features
• Demonstrating Proof of Possession (RFC 9449)

• Mutual TLS (RFC 8705)

• JWT Profile for Access Tokens (RFC 9068)

• JWT-Secured Authorization Requests (RFC 9101)

• Rich Authorization Requests (RFC 9396)

• Pushed Authorization Requests (RFC 9126)

Rob Allen ~ akrabat.com

Talking about data...

Rich Authorization Requests: Allows for finegrained, specific authorization (e.g. transfer of money), but Front channel attacker can see or modify

Pushed Authorization Requests: Send Rich Auth Requests in back channel, before Front channel initiates auth flow - keeps them secret

OAuth 2.0 is today's standard. Implement it, but be ready for 2.1

Rob Allen ~ akrabat.com

That's it. OAuth 2.1 and all the other standards make QAuth better and more secure. Please adopt them where you can!

Thank you!

slides: https://akrabat.com/7337
q&a and feedback: https://grusp.org/agenda

Rob Allen ~ akrabat.com

https://akrabat.com/7337
https://grusp.org/agenda

	OAuth 2.0 Roles
	OAuth 2.0 Protocol Flows
	Password Credentials Flow
	Password Credentials Flow
	Password Credentials Flow
	Password Credentials Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Authorization Code Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Implict Flow
	Client Credentials Flow
	Client Credentials Flow
	Client Credentials Flow
	OAuth 2.0 Refresh token
	The OAuth 2.0 Framework in 2012
	The OAuth 2.0 Framework Today
	Key extensions since 2012
	PKCE
	PKCE workflow
	PKCE workflow
	PKCE workflow
	PKCE workflow
	PKCE workflow
	Device Authorization Flow
	Device Authorization Flow
	Device Authorization Flow
	Device Authorization Flow
	Best Practices since 2012
	Best Current Practice
	Best Current Practice
	Best Current Practice
	Best Current Practice
	Best Current Practice
	Best Current Practice
	Best Current Practice
	Key Objectives of OAuth 2.1
	Key Objectives of OAuth 2.1
	Key Objectives of OAuth 2.1
	OAuth 2.1 Flows
	Tokens
	Other things
	Migrating to 2.1
	Migrating to 2.1
	Migrating to 2.1
	Migrating to 2.1
	Migrating to 2.1
	Migrating to 2.1
	Other relatively new OAuth features
	Other relatively new OAuth features
	Other relatively new OAuth features
	Other relatively new OAuth features

