
Debugging for beginners
Rob Allen
May 2013

Debugging
Debugging is a methodical process of finding and
reducing the number of bugs, or defects, in a
computer program thus making it behave as
expected.

Wikipedia

Bugs
There are two types of bugs:

Trivial and very very difficult.

The 6 stages of debugging

1. That can’t happen.
2. That doesn’t happen on my machine.
3. That shouldn’t happen.
4. Why is that happening?
5. Oh, I see.
6. How did that ever work?

— John Chang, 2003

The debugging process

• Reproduce
• Diagnose
• Fix
• Reflect

Reproduce
Can you make the error happen on demand?

Where to start?

• Don’t trust the bug report!
• Find out what the correct operation is expected to

be!
• Only ever work on one problem at a time!
• Check simple things first.
• Ask colleagues about problem area.

Reproduce

• Does it fail on the latest version?
• Does it fail on reported version?
• Match environment as closely as possible.
• Assume user didn’t do as expected.
• Last resort: add some logging and wait for new bug

report!

Refine
Reduce the bug to the smallest possible number of
steps

If it appears to be non-deterministic, it almost certainly
can be made deterministic

Automate the bug - create a unit test!

Diagnose
Investigate the error and work out what has to be

done!

Types of errors
The ones PHP tells you about

Read any error messages and logs

The rest!
Think & experiment!

Set up PHP to help you!

• Configure php.ini
• Install Xdebug

Useful php.ini settings
error_reporting = E_ALL | E_STRICT

display_errors = On

display_startup_errors = On

html_errors = On

log_errors = 1

error_log = /path/to/php_error.log

Xdebug

• var_dump() override
• set breakpoints
• inspect variables

Get it from http://xdebug.org (or your distro!)

http://xdebug.org

Xdebug settings
xdebug.var_display_max_children = 99999

xdebug.var_display_max_data = 99999

xdebug.var_display_max_depth = 10000

xdebug.scream = 1

(This will save you hours)

Xdebug settings
Ensure Xdebug’s output is always readable regardless
of your designer!

Set a custom CSS file in your browser and add this:

table.xdebug-error th,

table.xdebug-error td {

 color: black;

}

Types of error messages

• Fatal errors
• Syntax errors
• Recoverable errors
• Warnings
• Notices
• Deprecation notices

Don’t ignore any!

Reading error messages

• Actually read the error!

• it’s usually right
• backtraces from Xdebug!

• Only worry about the first error

A Fatal error
Fatal error: Call to undefined function datee() in
//www/localhost/test.php on line 12

Xdebug display

Exceptions

Exceptions
Look for a previous exception!

$previousException = $e->getPrevious();

The other types of error

• Logical errors
• It doesn’t do what the user expects

These are solved by experimentation and investigation

Var Dump Debugging
Quick and easy:

var_dump($comment);

exit;

Var Dump Debugging

(If you don’t have xdebug, then wrap in <pre> tags)

Divide and conquer

• Find halfway in process and inspect at that point
• Find halfway in correct half and inspect there
• etc.

Divide and conquer via git

• find a known working commit hash
• git bisect until you find the commit that caused

the problem
• Read the diff carefully.

Choose logical check points
e.g.

• Test values sent into script
• Test storage
• Test retrieval
• Test display

Step by step with Xdebug

• Add xdebug_break() when you want stop.
• Run in browser
• debugger will kick in when break point reached.

MacGDBp

Logging

• Long term error reporting & tracing.
• Different levels for different types of message.
• I use Zend\Log. Also consider monolog.

Zend\Log setup
// setup

use Zend\Log\Logger;

use Zend\Log\Writer\Stream as LoggerStream;

$log = new Logger;

$writer = new LoggerStream($filename);

$log->addWriter($writer);

Zend\Log setup (2)
// Log PHP errors & exceptions too

Logger::registerErrorHandler($log);

Logger::registerExceptionHandler($log);

Zend\Log in use
$logger->log(Logger::INFO, 'My message');

// levels:

// * EMERG * WARN

// * ALERT * NOTICE

// * CRIT * INFO

// * ERR * DEBUG

Fix
A quality update is worth the effort!

Know the root cause
Never change the source unless you know why what
you’re doing fixes the problem

Clean up first
Start from a clean source tree - save you what you
need first

git reset is good for this.

Create your test(s)

1. Add your new test(s)
2. Run them to prove that they fail
3. Fix the bug
4. Run the tests to prove that they pass
5. Run the full suite to ensure no (known) regressions

Refactor
The golden rule of refactoring is to not change
functionality.

Therefore refactor before or after fixing the bug.

Commit
If it’s not in source control, then it hasn’t happened.

Reflect
Make sure it doesn’t happen again!

What went wrong?

• Requirements / spec
• Architecture / design
• Construction
• Testing

Change your dev practices?

• Coding standards
• Pair programming / code reviews
• Developer documentation
• Staff training
• Unit testing!
• Refactor

Historical records

• Log every bug in your bug tracker!

Questions?

Thank you
https://joind.in/8184

Rob Allen : http://akrabat.com : @akrabat

https://joind.in/8184
http://akrabat.com

	Debugging
	Bugs
	The 6 stages of debugging
	The debugging process
	Where to start?
	Reproduce
	Refine
	Types of errors
	Set up PHP to help you!
	Useful php.ini settings
	Xdebug
	Xdebug settings
	Xdebug settings
	Types of error messages
	Reading error messages
	A Fatal error
	Xdebug display
	Exceptions
	Exceptions
	The other types of error
	Var Dump Debugging
	Var Dump Debugging
	Divide and conquer
	Divide and conquer via git
	Choose logical check points
	Step by step with Xdebug
	MacGDBp
	Logging
	Zend\Log setup
	Zend\Log setup (2)
	Zend\Log in use
	Know the root cause
	Clean up first
	Create your test(s)
	Refactor
	Commit
	What went wrong?
	Change your dev practices?
	Historical records

